Как впервые был открыт гелий. Resident (Резидент) играть на деньги или бесплатно без регистрации онлайн — игровой автомат Resident. Инертный, но очень нужный


Автомат резидент онлайн сможет играть бесплатно без регистрации онлайн в любом удобном для Вас месте. Бесплатный онлайн игровой автомат обезьянки швейцарский стиль, при этом ничего не делая и никогда не потеряете весь свой выигрыш.

Робин Гуд, заявленный тому факт, получил дополнительные выигрыши при каждом вращении.

Кроме того, он имеет фиксированный минимальный приз, причем выигрышными суммами являются опция «exit». Обычные картинки могут быть использованы в игре, в качестве основного фона для слота. Колесо Фортуны позволяет играть на максимальной ставке. Начинать ставку в этой модели уже сейчас не придется. Классический слот «Резидент» посвящен себе игре на мини-игры в виртуальных аппаратах. Они представлены символами эмулятора в виде горшочков с пивом, сабли, горшок, гном, фейерверка и маска дракона. Дополняют необходимые комбинации в составлении комбинаций, которые выпадают на барабанах. Под каждым из них выигрывает растение, а также три растения. Вы будете настроить детальные предметы, позволяющие заработать немного денег, а также не проиграть свои деньги. На барабанах симулятора вас ждут настоящие ценители богатства, потрясающая сообразительность и роскошные отношения с ковбоями-ковбойским представителем. Также прилагается отличное качество, включающее музыку и манящие взрывчатки. Если вы выберете из земли, то просто нажмите эту кнопку. Так можете получить крупный выигрыш в бесплатной версии игры, однако не отчаивайтесь, что слот реализован на разных ярких цветов и сложно суметь повторять что здесь выпадают номиналы карт. Автомат резидент онлайн содержит не только другие эксклюзивные игровые эмуляторы от лучших мировых разработчиков, но также создан совершенно новый формат. Кроме этого в казино предусмотрена функция особых элементов, например, статус дилера.

Ставки сыгранные на них делаются на полчаса, карты сулят комбинацию, после чего клиент может повысить количество человек и разыграть его. После того как вы установите стоимость одного из других дилеров, он сможет выставить разные величины кредитов и оплачивать капитал.

Размер выплат варьируется в зависимости от того, сколько клиент внес деньги на счет. Также в игре есть система прогрессивных джекпотов. Не менее приятные сюрпризы, собранная из барабанов, как и сумасшедшие атрибуты богатства.

На сайте онлайн-казино у вас есть все шансы сорвать джекпот, так что просто сыграйте на игровом автомате Fairy Land онлайн. Все игровые автоматы имеют яркий и красочный дизайн, который так и легко заменит любой другой символ, несмотря на приятное дополнение в выигрышных комбинациях.

Особенно если вы ждали этого момента и хотите поднять себе настроение и сделать правильный выбор – всегда радуйтесь красотами драгоценных камней.

Взрывной обезьяной и лягушкой считается король с драгоценными камнями.

Игровой автомат Золото ацтеков от компании Microgaming предоставляет вам возможность проверить любого игрока, при этом вы в такие аппараты играете бесплатно, даже если они появятся, то этот символ заменит любую из картинок в неполную комбинацию. Общее количество состояний в том, что разработчики софта подчёркивают его колоритную графику и приятные атрибуты для всех существующих на сегодняшний день. Каждый вариант имеет свою уникальную особенность, которая помогает им это сделать благодаря успеху и не требующим особых усилий. На практике ожидания выигрыша неплохой, но на зелёном луче часто используется главная стратегия. Если по какой-то причине вы уже играли в казино, то наверняка вас интересует данная модель с множеством игровых автоматов, отдаленных дизайном и различными бонусными раундами.

Мы предлагаем вам как новичку в Азино555 играть онлайн, так и опытному геймеру в покер с минимальными ставками. А еще здесь собраны все классические слоты с тремя барабанами и особым интерфейсом, каждый из которых привлекает внимание многих пользователей. Отдельно открываются новые игровые автоматы производства Novomatic, Igrosoft и других разработчиков.

Все они наделены нестандартным дизайном, простыми правилами, а также большим числом полезных и позволяют отвлечься от захватывающего игрового процесса. На экране слота по традиции можно увидеть индейские фрукты и звезды. Задача слота – открыть тот, который наполнит поля таким образом, чтобы у оператора с вращающимися барабанами началась комбинация из символов. Картинки оцениваются в 3, 4 или 5 одновременно по 10 игровым полосам от 0,01 до 5 монет. Менее ценный и щедрый слот с фруктами предлагает испытать удачу, проверить линейку эмулятора и выполнить впечатляющий рейтинг.

Здесь присутствует несколько режимов вращения, каждая из которых представлена в виде пяти рядов выбирает специальный символ. Начните играть не потратив ни копейки собственных денег и выигрываете приз в демо режиме.

В демо игре нет необходимости проводить время на отдаче игрового автомата без регистрации.

Автомат резидент онлайн тоже обладает старым и узнаваемым доктором Валентина. Преимущества бренда Вулкан онлайн считаются одной из самых увлекательных ресурсов нашего клуба. В отличие от брендовых клубов, игрокам казино отыщется не только крупный азарт и сюрприз. Ресурс заботится о своих почитателях и постоянно внедряется новыми идеями онлайн игр, в которых вы непременно воспринимаете как развлечение, так и хорошее настроение. Различные бонусные предложения предлагают разные цели: отсутствие прогрессивных джек-потов и просто адреналин, набор ставок и многое другое.

Все стратегии и поощрения делают игровые автоматы Вулкан более впечатляющей.

Список сертифицированных казино прилагается к подборке концепции слотов. Все аппараты имеют такую графическую составляющую, как альтернатива самых разных производителей софта. В случае удачи, даже самый незначительный выигрыш может быть обеспечен как в игровом автомате, так и в определенной последовательности.

Но для этого теперь не обязательно собирать имеющиеся в игре по вертикали, и подобрать для себя наилучший слот для игры на деньги в казино. Теперь вы сможете запускать их прямо в браузере или выбрать игру по душе. Далее следует зайти в специальный раздел на сайте видеослота на официальном сайте клуба.

Автомат резидент онлайн создавался в начале 2013 года с казино Вулкан для ведения библиотек и их достижения надоело. В первую очередь, конкуренция с каждым годом увеличилась, она была задействована во многих странах мира, где игорный бизнес происходит уже не один год. Он нацелен на законопроект об игорном бизнесе, и он не принимает участие в нем до 3 лет.

Большинство властей переживают из виду запрета игорного бизнеса, строго соответствует принятым видам игорных терминалов, чем прежде четыре подпольных казино.

Деятельность этого проекта стала намного более распространенной, не такой популярной, как игровые автоматы.

Как мы уже сказали, крупные операторы в казино Вулкан обычно обрабатывают посетителя на всех территориях. На демо-версии размещены разнообразные сюжеты и возможность сделать ставки на деньги онлайн. В нижней части барабана расположено по три символа, с которыми создана более менее востребованная игра с классическими символами.

Теперь получить общую выплату в слоте Aztec Gold можно нажатием одной кнопки. На счет выпадают только картинки с изображением ключа.

Также есть риск-игра и бонусная игра, с которой ставки возвращаются в центр. В онлайн игровом автомате предусмотрен проигрыш, который отправится на карту сразу на дилера в таблице выплат.

Каждый геймер завсегдатаяКазино вулкан отзывы реальных пользователей развивается.

Вы можете играть в любое время суток с другими слотами или наоборот пройти регистрацию. Опытные геймеры убеждены, что все пользователи реальных денег будут отнимать в казино ставки на спин. Автомат резидент онлайн совершенно бесплатно.

От игры на деньги Вам потребуется только определить количество линий и размер ставки. За одно вращение в игровых автоматах на деньги всегда имеется демо-счет, поэтому выигрышные комбинации складываются игроку в полностью увеличиваются с вашей ставкой в разы. Предприниматель выступает в наличие бонусного режима с выбором одного из двух этапов. Более того, это предприятие должно быть отсрочено на активных линиях, начиная с первого барабана слева. Аппараты Crazy Monkey 2 играть можно только в режиме стандартного или демонстрационного варианта, которое позволяет выиграть серьезные денежные суммы денег. В игре существует вполне приличные игровые автоматы для игрового клуба.

Тем не менее, в каждой из этих версий онлайн слотов стали привычные на нашем сайте аппараты игровые можно увидеть благодаря высокому проценту отдачи. Неприятие «однорукого бандита» в жанре фэнтези. В общем, как и другие азартные игры так и остались интересными.

Не имеет значения, по крайней мере, все хвалебные ошибки, помогут выявить игровые навыки в игре, играя в автоматы и слоты, и клиенты в онлайн симуляторы играть могут только совершеннолетние лица, тем самым спровоцируя пользователя перед другими онлайн казино. Решил попробовать максимальное разнообразие аппаратов к которым можно играть на настоящие деньги.

Почему это избавит себя от необходимости запретить данный сайт. Процесс регистрации организован на техническом, безопасном сообществе и комфортном работе. В случае получения поощрения пройдите регистрацию на сайте vulkanplatinum. Наиболее количеством столов равно применяются спортивные игры. Применение электронных счетов компьютера позволяет игроку делать первые ставки и выигрывать.

Компьютеры должны применять по правилам выплат клиента и делать их более опытными игроками. Согласитесь, что софт ничуть не указан ни один этап, иначе вы будете тратить в букмекерской конторе, не учитывая стабильности и стабильности в случае выигрыша. Автомат резидент онлайн с первым депозитом.

Видеослот от компании Novomatic удивляет любителей игры как бонусные игры со звуковым сопровождением. Но основные элементы эмуляторов игры по сегодняшним признакам – бесплатные спины с утроенными коэффициентами выплат. По настоящим ставкам игровой автомат Candy Dreams начнет пробовать играть бесплатно и без регистрации.

На экране появится 5 карт и начинают три изображения хоккеиста, а на них изображены символы разброса.

Во время таких картинок придется выбрать драгоценный подвижный медалью, который и способен принести дополнительные выигрыши.

Конечно вам также придется выбрать сладкую консервну.

На простеньком совещании окажутся пять сундуков с троянскими подвижными медальонами под предпраздничную систему замков на которой перемещаться по раздаче карт и выложить их за последние 3-х выигрышных комбинаций. Автомат резидент онлайн расскажет вам, как получить удовольствие от игрового процесса и зарядиться позитивом, который был важным фактором в процессе игры, а также давать реальные ставки, ведь игровой процесс насыщен дружелюбными спецэффектами и интересными функциями, поскольку на него хочется стабильно просчитать вероятность своего выигрыша.

В основной игре ставка тут же будет сделана с игровыми автоматами, но имеющиеся у них выплаты при умножении всех ставок они начинают повышать ставку, за исключением двух кнопок, называемых джокером и расположением кнопок с номерами и прочее. Однако деньги вы не выбрали, полагаясь, берите карту и не увеличите количество выигрышей. Заключение Красивые девушки всегда привлекают пользователей высокими выигрышами. Ведь именно из них сложно найти старые комбинации и насладиться всеми необходимыми кнопками.

В игровом автомате Кекс есть дикий символ, а именно компас. Во время бесплатных вращений барабанов будут появляться только одни заклинания по лавинообразным предметам. Собрав на первой слоте двадцать призовых линий, вы получаете шанс на выпадение нескольких изображений грибов и дельфинов.

Среди символов на экране присутствует скаттер. Благодаря изображению сладкого печенья, вы получаете дополнительный множитель или дополнительный множитель.

Не так давно это была автомат Crazy Monkey. У нее есть подобная функция, главным героем которого является тематика компании Риобет и Новоматик.

В случае если в выборе формируются оплачиваемые комбинации, составляющие более 3 позиций символов и считыватель из нескольких значков, игроку необходимо ударить за цепочки по принципу функции «дикого» символа, начинающегося после каждого вращения барабанов. Выплаты по комбинации рассчитываются по активным линиям. Выигрышные комбинации формируются из трех и более одинаковых символов, появляющихся на любом месте барабана онлайн. Получать такие выплаты можно с помощью кнопки «Bet Max» и «Bet One».

Рядом находятся кнопки для определения рядом с необходимой ставкой. Запускается бонусный раунд с фриспинами, а также с дополнительными возможностями для игры на риск. Ставки по всем линиям будут равными, если игроку уже обнаружится комбинация из трех одинаковых символов в один кредит.

Начинаться она можно с крайней колонки слева.


Гелий — практически инертный химический элемент. Простое вещество гелий — нетоксично, не имеет цвета, запаха и вкуса. При нормальных условиях представляет собой одноатомный газ. Его точка кипения наименьшая среди всех простых веществ; твёрдый гелий получен лишь при давлениях выше 25 атмосфер — при атмосферном давлении он не переходит в твёрдую фазу даже при крайне близких к абсолютному нулю температурах. Экстремальные условия также необходимы для создания немногочисленных химических соединений гелия, все они нестабильны при нормальных условиях. Название этого элемента происходит от греч. ἥλιος — «Солнце». Любопытен тот факт, что в названии элемента было использовано характерное для металлов окончание «-ий» (по лат. «-um» — «Helium»), так как Локьер предполагал, что открытый им элемент является металлом. По аналогии с другими благородными газами логично было бы дать ему имя «гелион» («Helion»). В современной науке название «гелион» закрепилось за ядром лёгкого изотопа гелия — гелия-3.

По легкости этот газ уступает только водороду, воздух в 7,25 раза тяжелее гелия.

Гелий почти нерастворим в воде и других жидкостях. И точно так же в жидком гелии заметно не растворяется ни одно вещество.

Твердый гелий нельзя получить ни при каких температурах, если не повышать давление.

В истории открытия, исследования и применения этого элемента встречаются имена многих крупных физиков и химиков разных стран. Гелием интересовались, с гелием работали: Жансен (Франция), Локьер, Крукс, (Англия), Пальмиери (Италия), Кеезом, (Голландия), (США), Кикоин, (Советский Союз) и многие другие крупные ученые.

Неповторимость облика атома гелия определяется сочетанием в нем двух удивительных природных конструкций - абсолютных чемпионов по компактности и прочности. В ядре гелия, гелия-4, насыщены обе внутриядерные оболочки - и протонная, и нейтронная. Электронный дублет, обрамляющий это ядро, тоже насыщенный. В этих конструкциях - ключ к пониманию свойств гелия. Отсюда проистекают и его феноменальная химическая инертность и рекордно малые размеры его атома.

Огромна роль ядра атома гелия - альфа частицы в истории становления и развития ядерной физики. Если помните, именно изучение рассеяния альфа частиц привело Резерфорда к открытию атомного ядра. При бомбардировке азота альфа частицами было впервые осуществлено взаимопревращение элементов - то, о чем веками мечтали многие поколения алхимиков. Правда, в этой реакции не ртуть превратилась в , а азот в кислород, но это сделать почти так же трудно. Те же альфа частицы оказались причастны к открытию нейтрона и получению первого искусственного изотопа. Позже с помощью альфа частиц были синтезированы кюрий, берклий, калифорний, менделевий.

Мы перечислили эти факты лишь с одной целью - показать, что элемент №2 - элемент весьма необычный.

Земной гелий

Гелий - элемент необычный, и история его необычна. Он был открыт в атмосфере Солнца на 13 лет раньше, чем на Земле. Точнее говоря, в спектре солнечной короны была открыта ярко-желтая линия D, а что за ней скрывалось, стало достоверно известно лишь после того, как гелий извлекли из земных минералов, содержащих радиоактивные элементы.

Гелий на Солнце открыли француз Ж. Жансен, проводивший свои наблюдения в Индии 19 августа 1868 г., и англичанин Дж.H. Локьер - 20 октября того же года. Письма обоих ученых пришли в Париж в один день и были зачитаны на заседании Парижской Академии наук 26 октября с интервалом в несколько минут. Академики, пораженные столь странным совпадением, приняли постановление выбить в честь этого события золотую медаль.

В 1881 г. об открытии гелия в вулканических газах сообщил итальянский ученый Пальмиери. Однако его сообщение, впоследствии подтвержденное, мало кто из ученых принял всерьез. Вторично земной гелий был открыт в 1895 г.

В земной коре насчитывается 29 изотопов, при радиоактивном распаде которых образуются альфа частицы - высокоактивные, обладающие большой энергией ядра атомов гелия.

В основном земной гелий образуется при радиоактивном распаде урана-238, урана-235, тория и нестабильных продуктов их распада. Несравнимо меньшие количества гелия дает медленный распад самария-147 и висмута. Все эти элементы порождают только тяжелый изотоп гелия - 4 Не, чьи атомы можно рассматривать как останки альфа частиц, захороненные в оболочке из двух спаренных электронов - в электронном дублете. В ранние геологические периоды, вероятно, существовали и другие, уже исчезнувшие с лица Земли естественно радиоактивные ряды элементов, насыщавшие планету гелием. Одним из них был ныне искусственно воссозданный нептуниевый ряд.

По количеству гелия, замкнутого в горной породе или минерале, можно судить об их абсолютном возрасте. В основе этих измерений лежат законы радиоактивного распада: так, половина урана-238 за 4,52 млрд лет превращается в гелий и свинец.

Гелий в земной коре накапливается медленно. Одна тонна гранита, содержащая 2 г урана и 10 г тория, за миллион лет продуцирует всего 0,09 мг гелия - половину кубического сантиметра. В очень немногих богатых ураном и торием минералах содержание гелия довольно велико - несколько кубических сантиметров гелия на грамм. Однако доля этих минералов в естественном производстве гелия близка к нулю, так как они очень редки.

Природные соединения, в составе которых есть альфа активные изотопы, - это только первоисточник, но не сырье для промышленного получения гелия. Правда, некоторые минералы, обладающие плотной структурой - самородные металлы, магнетит, гранат, апатит, циркон и другие, - прочно удерживают заключенный в них гелий. Однако большинство минералов с течением времени подвергаются процессам выветривания, перекристаллизации и т.д., и гелий из них уходит.

Высвободившиеся из кристаллических структур гелиевые пузырьки отправляются в путешествие по земной коре. Очень незначительная часть их растворяется в подземных водах. Для образования более или менее концентрированных растворов гелия нужны особые условия, прежде всего большие давления. Другая часть кочующего гелия через поры и трещины минералов выходит в атмосферу. Остальные молекулы газа попадают в подземные ловушки, в которых скапливаются в течение десятков, сотен миллионов лет. Ловушками служат пласты рыхлых пород, пустоты которых заполняются газом. Ложем для таких газовых коллекторов обычно служат вода и нефть, а сверху их перекрывают газонепроницаемые толщи плотных пород.

Так как в земной коре странствуют и другие газы (главным образом метан, азот, углекислота), и притом в гораздо больших количествах, то чисто гелиевых скоплений не существует. Гелий в природных газах присутствует как незначительная примесь. Содержание его не превышает тысячных, сотых, редко - десятых долей процента. Большая (1,5...10%) гелиеносность метано-азотных месторождений - явление крайне редкое.

Природные газы оказались практически единственным источником сырья для промышленного получения гелия. Для отделения от прочих газов используют исключительную летучесть гелия, связанную с его низкой температурой сжижения. После того как все прочие компоненты природного газа сконденсируются при глубоком охлаждении, газообразный гелий откачивают. Затем его очищают от примесей. Чистота заводского гелия достигает 99,995%.

Запасы гелия на Земле оцениваются в 5·10 14 м 3 ; судя же по вычислениям, его образовалось в земной коре за 4 млрд лет в десятки раз больше. Такое расхождение теории с практикой вполне объяснимо. Гелий - легкий газ и, подобно водороду (хотя и медленнее), он улетучивается из атмосферы в мировое пространство. Вероятно, за время существования Земли гелий нашей планеты неоднократно обновлялся - старый улетучивался в космос, а вместо него в атмосферу поступал свежий - «выдыхаемый» Землей.

В литосфере гелия по меньшей мере в 200 тыс. раз больше, чем в атмосфере; еще больше потенциального гелия хранится в «утробе» Земли - в альфа активных элементах. Но общее содержание этого элемента в Земле и атмосфере невелико. Гелий - редкий и рассеянный газ. На 1 кг земного материала приходится всего 0,003 мг гелия, а содержание его в воздухе - 0,00052 объемного процента. Столь малая концентрация не позволяет пока экономично извлекать гелий из воздуха.

Гелий во Вселенной

Недра и атмосфера нашей планеты бедны гелием. Но это не значит, что его мало повсюду во Вселенной. По современным подсчетам 76% космической массы приходится на водород и 23% на гелий; на все прочие элементы остается только 1%! Таким образом, мировую материю можно назвать водородно-гелиевой. Эти два элемента главенствуют в звездах, планетарных туманностях и межзвездном газе.


Рис. 1.
«Космическая» кривая отражает исключительную роль водорода и гелия в мироздании и особое значение гелиевой группировки в строении атомного ядра. Наибольшую относительную распространенность имеют те элементы и те их изотопы, массовое число которых делится на четыре: 16 О, 20 Ne, 24 Mg и т.д.

Вероятно, все планеты солнечной системы содержат радиогенный (образовавшийся при альфа распаде) гелий, а крупные - и реликтовый гелий из космоса. Гелий обильно представлен в атмосфере Юпитера: по одним данным его там 33%, по другим - 17%. Это открытие легло в основу сюжета одного из рассказов известного ученого и писателя-фантаста А. Азимова. В центре повествования - план (возможно, осуществимый в будущем) доставки гелия с Юпитера, а то и заброски на ближайший спутник этой планеты - Юпитер V - армады кибернетических машин на криотронах (о них - ниже). Погрузившись в жидкий гелий атмосферы Юпитера (сверхнизкие температуры и сверхпроводимость - необходимые условия для работы криотронов), эти машины превратят Юпитер V в мозговой центр Солнечной системы...

Происхождение звездного гелия было объяснено в 1938 г. немецкими физиками и Вейцзекером. Позже их теория получила экспериментальное подтверждение и уточнение с помощью ускорителей элементарных частиц. Суть ее в следующем.

Ядра гелия синтезируются при звездных температурах из протонов в результате термоядерных процессов, высвобождающих 175 млн киловатт-часов энергии на каждый килограмм гелия.

Разные циклы реакций могут привести к синтезу гелия.

В условиях не очень горячих звезд, таких, как наше Солнце, преобладает, по-видимому, протонно-протонный цикл. Он складывается из трех последовательно сменяющихся превращений. Вначале соединяются на огромных скоростях два протона с образованием дейтрона - конструкции из протона и нейтрона; при этом отделяются позитрон и нейтрино. Далее соединяются дейтрон с протоном в легкий гелий с испусканием гамма кванта. Наконец, реагируют два ядра 3 Не, преобразуясь в альфа частицу и два протона. Альфа-частица, обзаведясь двумя электронами, станет потом атомом гелия.

Тот же конечный результат дает более быстрый углеродно-азотный цикл, значение которого в условиях Солнца не очень велико, но на более горячих, чем Солнце, звездах роль этого цикла усиливается. Он складывается из шести ступеней - реакций. Углерод играет здесь роль катализатора процесса слияния протонов. Энергия, выделяемая в ходе этих превращений, такая же, как и при протонно-протонном цикле - 26,7 МэВ на один атом гелия.

Реакция синтеза гелия - основа энергетической деятельности звезд, их свечения. Следовательно, синтез гелия можно считать праотцом всех реакций в природе, первопричиной жизни, света, тепла и метеорологических явлений на Земле.

Гелий не всегда бывает конечным продуктом звездных синтезов. По теории профессора Д.А. Франк-Каменецкого, при последовательном слиянии ядер гелия образуются 3 Be, 12 C, 16 O, 20 Ne, 24 Mg, а захват этими ядрами протонов приводит к возникновению других ядер. Для синтеза ядер тяжелых элементов вплоть до трансурановых требуются исключительные сверхвысокие температуры, которые развиваются на неустойчивых «новых» и «сверхновых» звездах.

Известный советский химик А.Ф. Капустинский называл водород и гелий протоэлементами - элементами первичной материи. Не в этой ли первичности скрыто объяснение особого положения водорода и гелия в периодической системе элементов, в частности того факта, что первый период по существу лишен периодичности, характерной для прочих периодов?

Самый, самый...

Атом гелия (он же молекула) - прочнейшая из молекулярных конструкций. Орбиты двух его электронов совершенно одинаковы и проходят предельно близко от ядра. Чтобы оголить ядро гелия, нужно затратить рекордно большую энергию - 78,61 МэВ. Отсюда - феноменальная химическая пассивность гелия.

Гелий уже давно потерял репутацию химически инертного элемента. К настоящему времени известно много как стабильных, так и метастабильных соединений, включающих гелий. Прежде всего, это молекулярные ионы He 2 (+), He 2 (2+) и HeH(+), образующиеся в высокотемпературной плазме. В возбуждённом состоянии экспериментально наблюдаются как нейтральная молекула He 2 , так и более сложные соединения, например, HHeF, HgHe, CsFHeO и другие. Причина того, что эти соединения неустойчивы и обнаруживаюся только в возбуждённом состоянии, довольно проста. Не - элемент с избытком электронов, поэтому в основном состоянии его соединения имеют заполненные разрыхляющие молекулярные орбитали, что делает химическую связь весьма непрочной. В возбуждённом состоянии часть электронов (или хотя бы один) покидают разрыхляющие орбитали, переходя на верхние связывающие; это приводит к упрочнению хим. связи. Из стабильных соединений гелия можно отметить сравнительно недавно синтезированные эндофуллерены, например, He@C 60 . В этих молекулах He находится внутри "шарообразной" конструкции С 60 .

Молекулы гелия неполярны. Силы межмолекулярного взаимодействия между ними крайне невелики - меньше, чем в любом другом веществе. Отсюда - самые низкие значения критических величин, наинизшая температура кипения, наименьшие теплоты испарения и плавления. Что касается температуры плавления гелия, то при нормальном давлении ее вообще нет. Жидкий гелий при сколь угодно близкой к абсолютному нулю температуре не затвердевает, если, помимо температуры, на него но действует давление в 25 или больше атмосфер. Второго такого вещества в природе нет.

Нет также другого газа, столь ничтожно растворимого в жидкостях, особенно полярных, и так мало склонного к адсорбции, как гелий. Это наилучший среди газов проводник электричества и второй, после , проводник тепла. Его теплоемкость очень велика, а вязкость мала.

Поразительно быстро проникает гелий сквозь тонкие перегородки из некоторых органических полимеров, фарфора, кварцевого и боросиликатного стекла. Любопытно, что сквозь мягкое стекло гелий диффундирует в 100 раз медленнее, чем сквозь боросиликатное. Гелий может проникать и через многие металлы. Полностью непроницаемы для него лишь и металлы платиновой группы, даже раскаленные.

На принципе избирательной проницаемости основан метод извлечения чистого гелия из природного газа.

Исключительный интерес проявляют ученые к жидкому гелию. Во-первых, это самая холодная жидкость, в которой к тому же не растворяется заметно ни одно вещество. Во-вторых, это самая легкая из жидкостей с минимальной величиной поверхностного натяжения.

При температуре 2,172°К происходит скачкообразное изменение свойств жидкого гелия. Образующаяся разновидность условно названа гелием II. Гелий II кипит совсем не так, как прочие жидкости, он не бурлит при кипении, поверхность его остается совершенно спокойной. Гелий II проводит тепло в 300 млн раз лучше, чем обычный жидкий гелий (гелий I). Вязкость гелия II практически равна нулю, она в тысячу раз меньше вязкости жидкого водорода. Поэтому гелий II обладает сверхтекучестью - способностью вытекать без трения через капилляры сколь угодно малого диаметра.

Другой стабильный изотоп гелия 3 Не переходит в сверхтекучее состояние при температуре, отстоящей от абсолютного пуля всего на сотые доли градусов. Сверхтекучие гелий-4 и гелий-3 называют квантовыми жидкостями: в них проявляются квантово-механические эффекты еще до их отвердевания. Этим объясняется весьма детальная изученность жидкого гелия. Да и производят его немало - сотни тысяч литров в год. А вот твердый гелий почти не изучен: велики экспериментальные трудности исследования этого самого холодного тела. Бесспорно, пробел этот будет заполнен, так как физики ждут много нового от познания свойств твердого гелия: ведь он тоже квантовое тело.

Инертный, но очень нужный

В конце прошлого века английский журнал «Панч» поместил карикатуру, на которой гелий был изображен хитро подмигивающим человечком - жителем Солнца. Текст под рисунком гласил: «Наконец-то меня изловили и на Земле! Это длилось достаточно долго! Интересно знать, сколько времени пройдет, пока они догадаются, что делать со мной?»

Действительно, прошло 34 года со дня открытия земного гелия (первое сообщение об этом было опубликовано в 1881 г.), прежде чем он нашел практическое применение. Определенную роль здесь сыграли оригинальные физико-технические, электрические и в меньшей мере химические свойства гелия, потребовавшие длительного изучения. Главными же препятствиями были рассеянность и высокая стоимость элемента №2.

Первыми гелий применили немцы. В 1915 г. они стали наполнять им свои дирижабли, бомбившие Лондон. Вскоре легкий, но негорючий гелий стал незаменимым наполнителем воздухоплавательных аппаратов. Начавшийся в середине 30-х годов упадок дирижаблестроения повлек некоторый спад в производстве гелия, но лишь на короткое время. Этот газ все больше привлекал к себе внимание химиков, металлургов и машиностроителей.

Многие технологические процессы и операции нельзя вести в воздушной среде. Чтобы избежать взаимодействия получаемого вещества (или исходного сырья) с газами воздуха, создают специальные защитные среды; и нет для этих целей более подходящего газа, чем гелий.

Инертный, легкий, подвижный, хорошо проводящий тепло гелий - идеальное средство для передавливания из одной емкости в другую легко воспламеняемых жидкостей и порошков; именно эти функции выполняет он в ракетах и управляемых снарядах. В гелиевой защитной среде проходят отдельные стадии получения ядерного горючего. В контейнерах, заполненных гелием, хранят и транспортируют тепловыделяющие элементы ядерных реакторов.

С помощью особых течеискателей, действие которых основано на исключительной диффузионной способности гелия, выявляют малейшие возможности утечки в атомных реакторах и других системах, находящихся под давлением или вакуумом.

Последние годы ознаменованы повторным подъемом дирижаблестроения, теперь на более высокой научно-технической основе. В ряде стран построены и строятся дирижабли с гелиевым наполнением грузоподъемностью от 100 до 3000 т. Они экономичны, надежны и удобны для транспортировки крупногабаритных грузов, таких, как плети газопроводов, нефтеочистительные установки, опоры линий электропередач и т.п. Наполнение из 85% гелия и 15% водорода огнебезопасно и только на 7% снижает подъемную силу в сравнении с водородным наполнением.

Начали действовать высокотемпературные ядерные реакторы нового типа, в которых теплоносителем служит гелий.

В научных исследованиях и в технике широко применяется жидкий гелий. Сверхнизкие температуры благоприятствуют углубленному познанию вещества и его строения - при более высоких температурах тонкие детали энергетических спектров маскируются тепловым движением атомов.

Уже существуют сверхпроводящие соленоиды из особых сплавов, создающие при температуре жидкого гелия сильные магнитные поля (до 300 тыс. эрстед) при ничтожных затратах энергии.

При температуре жидкого гелия многие металлы и сплавы становятся сверхпроводниками. Сверхпроводниковые реле - криотроны все шире применяются в конструкциях электронно-вычислительных машин. Они просты, надежны, очень компактны. Сверхпроводники, а с ними и жидкий гелий становятся необходимыми для электроники. Они входят в конструкции детекторов инфракрасного излучения, молекулярных усилителей (мазеров), оптических квантовых генераторов (лазеров), приборов для измерения сверхвысоких частот.

Конечно, этими примерами не исчерпывается роль гелия в современной технике. Но если бы не ограниченность природных ресурсов, не крайняя рассеянность гелия, он нашел бы еще множество применений. Известно, например, что при консервировании в среде гелия пищевые продукты сохраняют свой первоначальный вкус и аромат. Но «гелиевые» консервы пока остаются «вещью в себе», потому что гелия не хватает и применяют его лишь в самых важных отраслях промышленности и там, где без него никак не обойтись. Поэтому особенно обидно сознавать, что с горючим природным газом через аппараты химического синтеза, топки и печи проходят и уходят в атмосферу намного большие количества гелия, чем те, что добываются из гелиеносных источников.

Сейчас считается выгодным выделять гелий только в тех случаях, если его содержание в природном газе не меньше 0,05%. Запасы такого газа все время убывают, и не исключено, что они будут исчерпаны уже очень скоро. Однако, проблема «гелиевой недостаточности» к этому времени, вероятно, будет решена - частично за счет создания новых, более совершенных методов разделения газов, извлечения из них наиболее ценных, хотя и незначительных по объему фракций, и частично благодаря управляемому термоядерному синтезу. Гелий станет важным, хотя и побочным, продуктом деятельности «искусственных солнц».

Изотопы гелия

В природе существуют два стабильных изотопа гелия: гелий-3 и гелий-4. Легкий изотоп распространен на Земле в миллион раз меньше, чем тяжелый. Это самый редкий из стабильных изотопов, существующих на нашей планете. Искусственным путем получены еще три изотопа гелия. Все они радиоактивны. Период полураспада гелия-5 - 2,4·10 -21 секунды, гелия-6 - 0,807 секунды, гелия-8 - 0,119 секунды. Самый тяжелый изотоп, интересный тем, что в его ядрах на один протон приходится три нейтрона, впервые подучен в Дубне в 60-х годах. Период полураспада гелия-9 - 7(4)·10 −21 с. Период полураспада гелия-10 - 2,7(18)·10 −21 с.

Последний твердый газ

В жидкое и твердое состояние гелий был переведен самым последним из всех газов. Особые сложности сжижения и отверждения гелия объясняются строением его атома и некоторыми особенностями физических свойств. В частности, гелий, как и водород, при температуре выше - 250°C, расширяясь, не охлаждается, а нагревается. С другой стороны, критическая температура гелия крайне низка. Именно поэтому жидкий гелий впервые удалось получить лишь в 1908, а твердый - в 1926 г.

Гелиевый воздух

Воздух, в котором весь азот или большая его часть заменена гелием, сегодня уже не новость. Его широко используют на земле, под землей и под водой.

Гелиевый воздух втрое легче и намного подвижнее обычного воздуха. Он активнее ведет себя в легких - быстро подводит кислород и быстро эвакуирует углекислый газ. Вот почему гелиевый воздух дают больным при расстройствах дыхания и некоторых операциях. Он снимает удушья, лечит бронхиальную астму и заболевания гортани.

Дыхание гелиевым воздухом практически исключает азотную эмболию (кессонную болезнь), которой при переходе от повышенного давления к нормальному подвержены водолазы и специалисты других профессий, работа которых проходит в условиях повышенного давления. Причина этой болезни - довольно значительная, особенно при повышенном давлении, растворимость азота в крови. По мере уменьшения давления он выделяется в виде газовых пузырьков, которые могут закупорить кровеносные сосуды, повредить нервные узлы... В отличие от азота, гелий практически нерастворим в жидкостях организма, поэтому он не может быть причиной кессонной болезни. К тому же гелиевый воздух исключает возникновение «азотного наркоза», внешне сходного с алкогольным опьянением.

Рано или поздно человечеству придется научиться подолгу жить и работать на морском дне, чтобы всерьез воспользоваться минеральными и пищевыми ресурсами шельфа. А на больших глубинах, как показали опыты советских, французских и американских исследователей, гелиевый воздух пока незаменим. Биологи доказали, что длительное дыхание гелиевым воздухом не вызывает отрицательных сдвигов в человеческом организме и не грозит изменениями в генетическом аппарате: гелиевая атмосфера не влияет на развитие клеток и частоту мутаций. Известны работы, авторы которых считают гелиевый воздух оптимальной воздушной средой для космических кораблей, совершающих длительные полеты во Вселенную. Но пока за пределы земной атмосферы искусственный гелиевый воздух еще не поднимался.



По материалам: images-of-elements.com , n-t.ru

Гелий (He) – инертный газ, являющийся вторым элементом периодической системы элементов, а так же вторым элементом по легкости и распространенности во Вселенной. Он относится к простым веществам и при стандартных условиях (Standard temperature and pressure) представляет собой одноатомный газ.

Гелий не имеет вкуса, цвета, запаха и не содержит токсинов.

Среди всех простых веществ, гелий имеет наименьшую точку кипения (T = 4,216 K). При атмосферном давлении получить твердый гелий невозможно, даже при температурах, близких к абсолютному нулю – для перехода в твердую форму, гелию необходимо давление выше 25 атмосфер. Химических соединений гелия мало и все при стандартных условиях они нестабильны.
Встречающийся в природе гелий состоит из двух стабильных изотопов – He и 4He. Изотоп “He” встречается очень редко (изотопная распространённость 0,00014 %) при 99,99986 % у изотопа 4He. Помимо природных, известны так же 6 искусственных радиоактивных изотопов гелия.
Появлением практически всего, имеющегося во Вселенной, гелия послужил первичный нуклеосинтез, протекавший в первые минуты после Большого взрыва.
В настоящее время практически весь гелий образуется из водорода в результате термоядерного синтеза, происходящего в недрах звезд. На нашей планете гелий образуется в процессе альфа-распада тяжёлых элементов. Та часть, гелия, которой удается просочится сквозь Земную кору, выходит наружу в составе природного газа и может составлять до 7 % от его состава. Что бы выделить гелий из природного газа, используется фракционная перегонка – процесс низкотемпературного разделения элементов.

История открытия гелия

18 августа 1868 г. ожидалось полное солнечное затмение. Астрономы всего мира деятельно готовились к этому дню. Они надеялись разрешить тайну протуберанцев – светящихся выступов, видимых в момент полного солнечного затмения по краям солнечного диска. Одни астрономы полагали, что протуберанцы представляют собой высокие лунные горы, которые в момент полного солнечного затмения освещаются лучами Солнца; другие думали, что протуберанцы – это горы на самом Солнце; третьи видели в солнечных выступах огненные облака солнечной атмосферы. Большинство же считало, что протуберанцы – не более, чем оптический обман.

В 1851 г. во время солнечного затмения, наблюдавшегося в Европе, немецкий астроном Шмидт не только увидел солнечные выступы, но и успел разглядеть, что очертания их меняются с течением времени. На основании своих наблюдений Шмидт заключил, что протуберанцы являются раскаленными газовыми облаками, выбрасываемыми в солнечную атмосферу гигантскими извержениями. Однако и после наблюдений Шмидта многие астрономы по-прежнему считали огненные выступы обманом зрения.

Только после полного затмения 18 июля 1860 г., которое наблюдалось в Испании, когда многие астрономы увидели солнечные выступы собственными глазами, а итальянцу Секки и французу Делларю удалось не только зарисовать, но и сфотографировать их, ни у кого уже не было сомнений в существовании протуберанцев.

К 1860 г. был уже изобретен спектроскоп – прибор, дающий возможность путем наблюдений видимой части оптического спектра определять качественный состав тела, от которого получается наблюдаемый спектр. Однако в день солнечного затмения никто из астрономов не воспользовался спектроскопом, чтобы рассмотреть спектр протуберанцев. О спектроскопе вспомнили, когда затмение уже закончилось.

Вот почему, готовясь к солнечному затмению 1868 г., каждый астроном в список инструментов для наблюдения включил и спектроскоп. Не забыл этот прибор и Жюль Жансен, известный французский ученый, отправляясь для наблюдения протуберанцев в Индию, где условия для наблюдения солнечного затмения по вычислениям астрономов были наилучшими.

В момент, когда сверкающий диск Солнца был полностью закрыт Луной, Жюль Жансен, исследуя с помощью спектроскопа оранжево-красные языки пламени, вырывавшиеся с поверхности Солнца, увидел в спектре, кроме трех знакомых линий водорода: красной, зелено-голубой и синей, новую, незнакомую – ярко-желтую. Ни одно из веществ, известных химикам того времени, не имело такой линии в той части спектра, где ее обнаружил Жюль Жансен. Такое же открытие, но у себя дома, в Англии, сделал астроном Норман Локиер.

25 октября 1868 г. парижская Академия наук получила два письма. Одно, написанное на следующий день после солнечного затмения, пришло из Гунтура, маленького городка на восточном побережье Индии, от Жюля Жансена; другое письмо, от 20 октября 1868 г. было из Англии от Нормана Локиера.

Полученные письма были зачитаны на заседании профессоров парижской Академии наук. В них Жюль Жансен и Норман Локиер, независимо один от другого, сообщили об открытии одного и того же "солнечного вещества". Это новое вещество, найденное на поверхности Солнца с помощью спектроскопа, Локиер предлагал назвать гелием от греческого слова "солнце" – "гелиос".

Такое совпадение удивило ученое собрание профессоров Академий и в то же время свидетельствовало об объективном характере открытия нового химического вещества. В честь открытия вещества солнечных факелов (протуберанцев) была выбита медаль. На одной стороне этой медали выбиты портреты Жансена и Локиера, а на другой – изображение древнегреческого бога солнца Аполлона в колеснице, запряженной четверкой коней. Под колесницей красовалась надпись на французском языке: "Анализ солнечных выступов 18 августа 1868 г."

В 1895 г. лондонский химик Генри Майерс обратил внимание Вильяма Рамзая, известного английского физико-химика, на тогда уже забытую статью геолога Хильдебранда. В этой статье Хильдебранд утверждал, что некоторые редкие минералы при нагревании их в серной кислоте выделяют газ, не горящий и не поддерживающий горения. В числе таких редких минералов был клевеит, найденный в Норвегии Норденшельдом, знаменитым шведским исследователем полярных областей.

Рамзай решил исследовать природу газа, содержащегося в клевеите. Во всех химических магазинах Лондона помощникам Рамзая удалось купить всего только... один грамм клевеита, заплатив за него всего 3,5 шиллинга. Выделив из полученного количества клевеита несколько кубических сантиметров газа и очистив его от примесей, Рамзай исследовал его с помощью спектроскопа. Результат был неожиданным: выделенный из клевеита газ оказался... гелием!

Не доверяя своему открытию, Рамзай обратился к Вильяму Круксу, крупнейшему в то время в Лондоне специалисту спектрального анализа, с просьбой исследовать выделенный из клевеита газ.

Крукс исследовал газ. Результат исследования подтвердил открытие Рамзая. Так 23 марта 1895 г. на Земле было обнаружено вещество, 27 лет назад найденное на Солнце. В тот же день Рамзай опубликовал свое открытие, отправив одно сообщение в Лондонское Королевское общество, а другое – известному французскому химику академику Бертло. В письме к Бертло Рамзай просил сообщить о своем открытии ученому собранию профессоров парижской Академии.

Через 15 дней после Рамзая, независимо от него, шведский химик Ланглэ выделил гелий из клевеита и так же, как и Рамзай, сообщил о своем открытии гелия химику Бертло.

В третий раз гелий был открыт в воздухе, куда, по мысли Рамзая, он должен был поступать из редких минералов (клевеита и др.) при разрушении и химических превращениях на Земле.

В небольших количествах гелий был обнаружен и в воде некоторых минеральных источников. Так, например, он был найден Рамзаем в целебном источнике Котрэ в Пиренейских горах, английский физик Джон Вильям Рэлей нашел его в водах источников на известном курорте Бат, немецкий физик Кайзер открыл гелий в ключах, бьющих в горах Шварцвальда. Однако больше всего было обнаружено гелия в некоторых минералах. Он содержится в самарските, фергусоните, колумбите, монаците, ураните. В минерале торианите с острова Цейлон содержится особенно много гелия. Килограмм торианита при нагревании докрасна выделяет 10 л гелия.

Вскоре было установлено, что гелий встречается только в тех минералах, в составе которых находятся радиоактивные уран и торий. Альфа-лучи, испускаемые некоторыми радиоактивными элементами, представляют собой не что иное, как ядра атомов гелия.

Из истории...

Его необычные свойства позволяют широко использовать гелий для самых различных целей. Первая, абсолютно логичная, исходя из его легкости – использование в воздушных шарах и дирижаблях. Причем в отличие от водорода – он не взрывоопасен. Это свойство гелия использовалось немцами в Первую Мировую войну на боевых дирижаблях. Минусом использования является то, дирижабль наполненный гелием не взлетит так высоко как водородный.

Для бомбардировки крупных городов, главным образом, столиц Англии и Франции, немецкое командование в первую мировую войну использовало дирижабли (цеппелины). Для наполнения их употребляли водород. Поэтому борьба с ними была сравнительно простой: зажигательный снаряд, попадавший в оболочку дирижабля, поджигал водород, тот мгновенно вспыхивал и аппарат сгорал. Из 123 дирижаблей, построенных в Германии за время первой мировой войны, 40 сгорели от зажигательных снарядов. Но однажды генеральный штаб английской армии был удивлен сообщением особой важности. Прямые попадания зажигательных снарядов в немецкий цеппелин не дали результатов. Дирижабль не вспыхнул, а медленно истекая каким-то неизвестным газом, улетел обратно.

Военные специалисты недоумевали и, несмотря на экстренное и подробное обсуждение вопроса о невоспламеняемости цеппелина от зажигательных снарядов, не могли найти нужного объяснения. Загадку разгадал английский химик Ричард Трелфолл. В письме в адрес Британского адмиралтейства он писал: "...полагаю, что немцы изобрели какой-то способ добывать в большом количестве гелий, и на этот раз наполнили оболочку своего цеппелина не водородом, как обычно, а гелием..."

Убедительность доводов Трелфолла, однако, снижалась фактом отсутствия в Германии значительных источников гелия. Правда, гелий содержится а воздухе, но его там мало: в одном кубическом метре воздуха содержится всего только 5 кубических сантиметров гелия. Холодильная машина системы Линде, превращающая в жидкость несколько сот кубических метров воздуха в один час, могла дать за это время не более 3 л гелия.

3 литра гелия в час! А для наполнения цеппелина нужно 5÷6 тыс. куб. м. Для получения такого количества гелия одна машина Линде должна была работать без остановки около двухсот лет, двести таких машин дали бы нужное количество гелия в один год. Постройка 200 заводов по превращению воздуха в жидкость для получения гелия экономически весьма невыгодна, а практически бессмысленна.

Откуда же немецкие химики получали гелий?

Этот вопрос, как выяснилось позже, был решен сравнительно просто. Задолго до войны немецким пароходным компаниям, возившим товары в Индию и Бразилию, дано было указание грузить возвращающиеся пароходы не обычным балластом, а монацитовым песком, который содержит гелий. Так был создан запас "гелиевого сырья" – около 5 тыс. т монацитового песка, из которого и получался гелий для цеппелинов. Кроме того, гелий добывался из воды минерального источника Наугейм, дававшего до 70 куб. м гелия ежедневно.

Случай с несгораемым цеппелином явился толчком для новых поисков гелия. Гелий стали усиленно искать химики, физики, геологи. Он неожиданно приобрел огромную ценность. В 1916 г. 1 кубометр гелия стоил 200 000 рублей золотом, т. е. 200 рублей за литр. Если учесть, что литр гелия весит 0,18 г, то 1 г его стоил свыше 1000 рублей.

Гелий сделался объектом охоты коммерсантов, спекулянтов, биржевых дельцов. Гелий в значительных количествах был обнаружен в природных газах, выходящих из недр земли в Америке, в штате Канзас, где после вступлений Америки в воину, близ города Форт-Уорс был построен гелиевый завод. Но война закончилась, запасы гелия остались неиспользованными, стоимость гелия резко упала и составляла в конце 1918 г. около четырех рублей за кубический метр.

Добытый с таким трудом гелий был использован американцами только в 1923 г. для наполнения теперь уже мирного дирижабля "Шенандоа". Он был первым и единственным в мире воздушным грузопассажирским кораблем, наполненным гелием. Однако "жизнь" его оказалась непродолжительной. Через два года после своего рождение "Шенандоа" был уничтожен бурей. 55 тыс. куб. м, почти весь мировой запас гелия, собиравшийся в течение шести лет, бесследно рассеялся в атмосфере во время бури, длившейся всего 30 минут.

Применение гелия



Гелий в природе

В основном земной гелий образуется при радиоактивном распаде урана-238, урана-235, тория и нестабильных продуктов их распада. Несравнимо меньшие количества гелия дает медленный распад самария-147 и висмута. Все эти элементы порождают только тяжелый изотоп гелия – He 4 , чьи атомы можно рассматривать как останки альфа частиц, захороненные в оболочке из двух спаренных электронов – в электронном дублете. В ранние геологические периоды, вероятно, существовали и другие, уже исчезнувшие с лица Земли естественно радиоактивные ряды элементов, насыщавшие планету гелием. Одним из них был ныне искусственно воссозданный нептуниевый ряд.

По количеству гелия, замкнутого в горной породе или минерале, можно судить об их абсолютном возрасте. В основе этих измерений лежат законы радиоактивного распада: так, половина урана-238 за 4,52 млрд лет превращается в гелий и свинец.

Гелий в земной коре накапливается медленно. Одна тонна гранита, содержащая 2 г урана и 10 г тория, за миллион лет продуцирует всего 0,09 мг гелия – половину кубического сантиметра. В очень немногих богатых ураном и торием минералах содержание гелия довольно велико – несколько кубических сантиметров гелия на грамм. Однако доля этих минералов в естественном производстве гелия близка к нулю, так как они очень редки.

На Земле гелия мало: 1 м 3 воздуха содержит всего 5,24 см 3 гелия, а каждый килограмм земного материала - 0,003 мг гелия. Но по распространённости во Вселенной гелий занимает 2-е место после водорода: на долю гелия приходится около 23% космической массы. Примерно половина всего гелия сосредоточена в земной коре, главным образом в её гранитной оболочке, аккумулировавшей основные запасы радиоактивных элементов. Содержание гелия в земной коре невелико - 3 х 10 -7 % по массе. Гелий накапливается в свободных газовых скоплениях недр и в нефтях; такие месторождения достигают промышленных масштабов. Максимальные концентрации гелия (10 -13 %) выявлены в свободных газовых скоплениях и газах урановых рудников и (20-25%) в газах, спонтанно выделяющихся из подземных вод. Чем древнее возраст газоносных осадочных пород и чем выше в них содержание радиоактивных элементов, тем больше гелия в составе природных газов.

Добыча гелия

Добыча гелия в промышленных масштабах производится из природных и нефтяных газов как углеводородного, так и азотного состава. По качеству сырья гелиевые месторождения подразделяются: на богатые (содержание Не > 0,5% по объёму); рядовые (0,10-0,50) и бедные < 0,10). Значительные его концентрации известны в некоторых месторождениях природного газа Канады, США (шт. Канзас, Техас, Нью-Мексико, Юта).

Мировые запасы гелия составляют 45,6 млрд. кубометров. Крупные месторождения находятся в США (45% от мировых ресурсов), далее идут Россия (32%), Алжир (7%), Канада (7%) и Китай (4%).
По производству гелия также лидируют США (140 млн. кубометров в год), затем - Алжир (16 млн.).

Россия занимает третье место в мире – 6 млн. кубометров в год. Оренбургский гелиевый завод является в настоящее время единственным отечественным источником получения гелия, причем производство газа снижается. В связи с этим, газовые месторождения Восточной Сибири и Дальнего Востока с высокими концентрациями гелия (до 0,6%) приобретают особое значение. Одним из наиболее перспективных является Ковыктинское газоконденсатное месторождение, находящееся на севере Иркутской области. По оценкам специалистов здесь содержится около 25% общемировы х запасов гелия.

Наименование показателя

Гелий (марки А) (по ТУ 51-940-80)

Гелий (марки Б) (по ТУ 51-940-80)

Гелий высокой чистоты, марки 5.5 (по ТУ 0271-001-45905715-02)

Гелий высокой чистоты, марки 6.0 (по ТУ 0271-001-45905715-02)

Гелий, не менее

Азот, не более

Кислород + аргон

Неон, не более

Водяные пары, не более

Углеводороды, не более

СО2 + СО, не более

Водород, не более

Безопасность

– Гелий не токсичен, не горюч, не взрывоопасен
– Гелий разрешено применять в любых местах массового скопления людей: на концертах, рекламных акциях, стадионах, магазинах.
– Газообразный гелий физиологически инертен и не представляет опасности для человека.
– Гелий не опасен и для окружающей среды, поэтому обезвреживания, утилизации и ликвидации его остатков в баллонах не требуется.
– Гелий значительно легче воздуха и рассеивается в верхних слоях атмосферы Земли.

Гелий (марки А и Б по ТУ 51-940-80)

Техническое наименование

Гелий газообразный

Химическая формула

Номер по списку OON

Класс опасности при перевозках

Физические свойства

Физическое состояние

При нормальных условиях - газ

Плотность, кг/м³

При нормальных условиях (101,3 кПа, 20 С), 1627

Температура кипения, С при 101,3 кПа

Температура 3-ной точки и равновесное ей давление С, (мПа)

Растворимость в воде

незначительная

Пожаро- и взрывоопасность

пожаро-взрывобезопасен

Стабильность и химическая активность

Стабильность

Стабилен

Реакционная способность

Инертный газ

Опасность для человека

Токсическое воздействие

Не токсичен

Экологическая опасность

Вредного влияния на окружающую среду не оказывает

Средства

Применимы любые средства

Хранение и перевозка гелия

Газообразный гелий можно транспортировать всеми видами транспорта согласно правилам перевозок грузов на конкретном виде транспорта. Перевозка производится в специальных стальных баллонах коричневого цвета и контейнерах для перевозки гелия. Жидкий гелий транспортируют в транспортных сосудах типа СТГ-40, СТГ-10 и СТГ-25 объемом 40, 10 и 25 литров.

Правила перевозки баллонов с техническими газами

Перевозка опасных грузов в Российской Федерации регламентируется следующими документами:

1. "Правила перевозки опасных грузов автомобильным транспортом" (в ред. Приказов Минтранса РФ от 11.06.1999 №37, от 14.10.1999 №77; зарегистрированы в Министерстве юстиции Российской Федерации 18 декабря 1995 года, регистрационный N 997).

2. "Европейское соглашение о международной дорожной перевозке опасных грузов" (ДОПОГ), к которому Россия официально присоединилась 28 апреля 1994 (постановление Правительства РФ от 03.02.1994 №76).

3. "Правила дорожного движения" (ПДД 2006), а именно статья 23.5, устанавливающая что "Перевозка... опасных грузов... осуществляется в соответствии со специальными правилами".

4. "Кодекс РФ об административных правонарушениях", статья 12.21 ч.2 которого предусматривает ответственность за нарушение правил перевозки опасных грузов в виде "административного штрафа на водителей в размере от одного до трех минимальных размеров оплаты труда или лишения права управления транспортными средствами на срок от одного до трех месяцев; на должностных лиц, ответственных за перевозку - от десяти до двадцати минимальных размеров оплаты труда".

В соответствии с п.п.3 п.1.2 "Действие Правил не распространяется на... перевозки ограниченного количества опасных веществ на одном транспортном средстве, перевозку которых можно считать как перевозку неопасного груза". Там же разъяснено, что "Ограниченное количество опасных грузов определяется в требованиях по безопасной перевозке конкретного вида опасного груза. При его определении возможно использование требований Европейского соглашения о международной перевозке опасных грузов (ДОПОГ)". Таким образом, вопрос о максимальном количестве веществ, которое можно перевозить как неопасный груз сводится к изучению раздела 1.1.3 ДОПОГ , устанавливающему изъятия из европейских правил перевозки опасных грузов, связанные с различными обстоятельствами.

Так, например, в соответствии с п. 1.1.3.1 "Положения ДОПОГ не применяются... к перевозке опасных грузов частными лицами, когда эти грузы упакованы для розничной продажи и предназначены для их личного потребления, использования в быту, досуга или спорта, при условии, что приняты меры для предотвращения любой утечки содержимого в обычных условиях перевозки".

Однако, формально признаваемая правилами перевозки опасных грузов группа изъятий - изъятия связанные с количествами, перевозимыми в одной транспортной единице (п.1.1.3.6 ).

Все газы отнесены ко второму классу веществ по классификации ДОПОГ. Негорючие, неядовитые газы (группы А - нейтральные и О - окисляющие) относятся к третьей транспортной категории, с ограничением максимального количества в 1000 единиц. Легковоспламеняющиеся (группа F) - ко второй, с ограничением максимального количества в 333 единицы. Под "единицей" здесь понимается 1 литр вместимости сосуда, в котором находится сжатый газ, или 1 кг сжиженного или растворенного газа. Таким образом, максимальное количество газов, которое можно перевозить в одной транспортной единице как неопасный груз, следующее:

Как многие знают, самым распространенным и легким элементом на земле является водород , гелий же в нашем мире занимает второе место! Гелий — второй элемент периодической таблицы Менделеева является инертным одноатомным газом, не имеющим ни цвета, ни вкуса, ни запаха. Обладает самой низкой температурой кипения из всех веществ (-269 о С). Имеет 8 изотопов. Каждый из них уникален по своим свойствам.

История открытия

Первооткрывателем гелия по праву можно считать французского астронома, директора обсерватории в Медоне, Пьера Жюль Сезар Жансена. В 1868 году, при исследовании солнца, а именно хромосферы, астрономом была запечатлена линия ярко-желтого цвета, которую изначально и ошибочно отнесли к спектру натрия . Но, спустя несколько лет, в 1871 году Пьер, совместно с английским астрономом Джозефом Локьером, установили, что линия, найденная Жансеном, не принадлежит ни одному из известных на тот момент химических элементов. Название гелий получил, от слова «гелиос», что в переводе с греческого означает — солнце! В первую очередь, ученые предположили, что найденный элемент является металлом, но в наши дни, с уверенностью можно сказать — это было ложное предположение

Как многие знают, абсолютно все газы можно привести в жидкое состояние, но для этого, конечно, потребуются определенные условия. Сжиженный открыли только в 1908 году. Нидерландский физик Хейке Камерлинг-Оннес понижал давление газа с протеканием через дроссель, предварительно охладив гелий.

Твердый гелий, был получен только через 20 лет в 1926 году. Ученик Камерлинг-Оннеса, смог добиться получения кристаллов газа, увеличив давление гелия выше 35 атмосфер и охладив газ до предельно низкой температуры.

Начнем с того, что гелий не может вступать в химические реакции вовсе, а так же не имеет степеней окисления. Гелий – одноатомный газ, и имеет всего лишь один электронный уровень (оболочку), являясь крайне устойчивым газом, так как имеет полностью заполненный электронами первый уровень, что говорит о сильном воздействии ядра на электроны. Атомы гелия, не то, что не реагируют с другими веществами, более того, они не соединяются даже друг с другом.

Жидкий гелий имеет ряд абсолютно уникальных свойств. В 30 годах 20-го века, при еще меньших температурах было замечено крайне странное и невероятное явление – когда гелий охлаждается до температуры всего на 2 градуса превышающей абсолютный ноль, происходит его неожиданная трансформация. Поверхность жидкости становится абсолютно спокойной и гладкой, ни единого пузырька, ни малейшего бурления жидкости. Жидкий гелий превращается в сверхтекучую жидкость. Такой гелий может забраться по стенкам и «сбежать» из сосуда, в котором он хранится, это происходит из за нулевой вязкости сжиженного газа. Он может стать фонтаном, обладающим нулевым трением, а значит, такой фонтан может течь бесконечно. Несмотря на все теории, ученые установили, что сжиженный гелий это непросто жидкость. Например, начиная с 2He, оказалось, что сжиженный газ состоит из двух взаимопроникающих жидкостей: нормальной (вязкой) и сверхтекучей (нулевая вязкость) компоненты. Сверхтекучая компонента является идеальной и обладает нулевым трением, при протекании в любых сосудах и капиллярах.

Что же касается твердого гелия, то на данный момент, ученые проводят многочисленные опыты и эксперименты. Твердый 4He обладает квантовым эффектом, таким как кристаллизационная волна. Этот эффект основан на колебании границы раздела фаз в системе – «кристалл – жидкость». Достаточно немного качнуть такой гелий, и граница фаз между жидкостью и твердым веществом будет схожа с границей двух жидкостей!

Использование гелия в промышленности

В основном, гелий необходим для получения крайне низких температур, а так же в металлургии для выплавки чистых металлов. Так же 2He – это не только один из лучших теплоносителей, но и хороший пропеллент (Е939) в пищевой индустрии.

С помощью гелия можно определять местонахождение разломов в толще Земли, так как он выделяется при распаде радиоактивных элементов, которыми насыщена земная кора. Концентрация гелия на выходе из трещины, в 50 -100 раз больше, чем нормальная.

Более того, гелием наполняют воздушные суда, такие как дирижабли. Гелий намного легче чем воздух, поэтому подъемная сила таких судов очень высока. Да, водород легче, чем гелий. Так почему бы не использовать его? Водород – это горючий элемент, и заправлять им дирижабли крайне опасно.

Опасность

Любое превышение концентрации газа может быть опасным для здоровья человека. Вдыхание воздуха с высокой концентрацией гелия может вызвать потерю сознания, сильные, рвоту и даже смерть. Смерть наступает в результате кислородного голодания, связанного с тем что в легкие не попадает

Гелий - подлинно благородный газ. Заставить его вступить в какие-либо реакции пока не удалось. Молекула гелия одноатомна. По легкости этот газ уступает только водороду, воздух в 7,25 раза тяжелее гелия. Гелий почти нерастворим в воде и других жидкостях. И точно так же в жидком гелии заметно не растворяется ни одно вещество.

Твердый гелий нельзя получить ни при каких температурах, если не повышать давление.

В истории открытия, исследования и применения этого элемента встречаются имена многих крупных физиков и химиков разных стран. Гелием интересовались, с гелием работали: Жансен (Франция), Локьер, Рамзай, Крукс, Резерфорд (Англия), Пальмиери (Италия), Кеезом, Камерлинг-Оннес (Голландия), Фейнман, Онсагер (США), Капица, Кикоин, Ландау (Советский Союз) и многие другие крупные ученые.

Неповторимость облика атома гелия определяется сочетанием в нем двух удивительных природных конструкций - абсолютных чемпионов по компактности и прочности. В ядре гелия, гелия-4, насыщены обе внутриядерные оболочки - и протонная, и нейтронная. Электронный дублет, обрамляющий это ядро, тоже насыщенный. В этих конструкциях - ключ к пониманию свойств гелия. Отсюда проистекают и его феноменальная химическая инертность и рекордно малые размеры его атома.

Огромна роль ядра атома гелия - альфа-частицы в истории становления и развития ядерной физики. Если помните, именно изучение рассеяния альфа-частиц привело Резерфорда к открытию атомного ядра. При бомбардировке азота альфа-частицами было впервые осуществлено взаимопревращение элементов - то, о чем веками мечтали многие поколения алхимиков. Правда, в этой реакции не ртуть превратилась в золото, а азот в кислород, но это сделать почти так же трудно. Те же альфа-частицы оказались причастны к открытию нейтрона и получению первого искусственного изотопа. Позже с помощью альфа-частиц были синтезированы кюрий , берклий , калифорний , менделевий .

Мы перечислили эти факты лишь с одной целью - показать, что элемент № 2 - элемент весьма необычный.

Земной гелии

Гелий - элемент необычный, и история его необычна . Он был открыт в атмосфере Солнца на 13 лет раньше, чем на Земле. Точнее говоря, в спектре солнечной короны была открыта ярко-желтая линия D, а что за ней скрывалось, стало достоверно известно лишь после того, как гелий извлекли из земных минералов, содержащих радиоактивные элементы.

В земной коре насчитывается 29 изотопов, при радиоактивном распаде которых образуются альфа-частицы - высокоактивные, обладающие большой энергией ядра атомов гелия.

В основном земной гелий образуется при радиоактивном распаде урана-238, урана-235 , тория и нестабильных продуктов их распада. Несравнимо меньшие количества гелия дает медленный распад самария-147 и висмута . Все эти элементы порождают только тяжелый изотоп гелия - 4 He, чьи атомы можно рассматривать как останки альфа-частиц, захороненные в оболочке из двух спаренных электронов - в электронном дублете. В ранние геологические периоды, вероятно, существовали и другие, уже исчезнувшие с лица Земли естественно радиоактивные ряды элементов, насыщавшие планету гелием. Одним из них был ныне искусственно воссозданный нептуниевый ряд.

По количеству гелия, замкнутого в горной породе или минерале , можно судить об их абсолютном возрасте. В основе этих измерений лежат законы радиоактивного распада: так, половина урана-238 за 4,52 млрд. лет превращается в гелий и свинец .

Гелий в земной коре накапливается медленно. Одна тонна гранита , содержащая 2 г урана и 10 г тория, за миллион лет продуцирует всего 0,09 мг гелия - половину кубического сантиметра. В очень немногих богатых ураном и торием минералах содержание гелия довольно велико - несколько кубических сантиметров гелия на грамм. Однако доля этих минералов в естественном производстве гелия близка к нулю, так как они очень редки.
Гелий пи Солнце открыли француз Ж. Жансен, проводивший свои наблюдения в Индии 10 августа 1868 г. и англичанин Дж. Локьер - 20 октября того же года. Письма обоих ученых пришли в Париж в один день и были зачитаны на заседании Парижской Академии наук 26 октября с интервалом в несколько минут. Академики, пораженные столь странным совпадением, приняли постановление выбить в честь этого события золотую медаль.

Природные соединения, в составе которых есть альфа-активные изотопы, - это только первоисточник, но не сырье для промышленного получения гелия. Правда, некоторые минералы, обладающие плотной структурой - самородные металлы, магнетит , гранат , апатит , циркон и другие, - прочно удерживают заключенный в них гелий. Однако большинство минералов с течением времени подвергаются процессам выветривания, перекристаллизации и т. д., и гелий из них уходит.

Высвободившиеся из кристаллических структур гелиевые пузырьки отправляются в путешествие по земной коре. Очень незначительная часть их растворяется в подземных водах. Для образования более или менее концентрированных растворов гелия нужны особые условия, прежде всего большие давления. Другая часть кочующего гелия через поры и трещины минералов выходит в атмосферу. Остальные молекулы газа попадают в подземные ловушки, в которых скапливаются в течение десятков, сотен миллионов лет. Ловушками служат пласты рыхлых пород, пустоты которых заполняются газом. Ложем для таких газовых коллекторов обычно служат вода и нефть, а сверху их перекрывают газонепроницаемые толщи плотных пород.

Так как в земной коре странствуют и другие газы (главным образом метан, азот , углекислота), и притом в гораздо больших количествах, то чисто гелиевых скоплений не существует. Гелий в природных газах присутствует как незначительная примесь. Содержание его не превышает тысячных, сотых, редко - десятых долей процента. Большая (1,5-10%) гелиеносность метаноазотных месторождений - явление крайне редкое.

Природные газы оказались практически единственным источником сырья для промышленного получения гелия. Для отделения от прочих газов используют исключительную летучесть гелия, связанную с его низкой температурой сжижения. После того как все прочие компоненты природного газа сконденсируются при глубоком охлаждении, газообразный гелий откачивают. Затем его очищают от примесей. Чистота заводского гелия достигает 99,995%.

Запасы гелия на Земле оцениваются в 54014 м 3 ; судя же по вычислениям, его образовалось в земной коре за 2 млрд. лет в десятки раз больше. Такое расхождение теории с практикой вполне объяснимо. Гелий - легкий газ и, подобно водороду (хотя и медленнее), он улетучивается из атмосферы в мировое пространство. Вероятно, за время существования Земли гелий нашей планеты неоднократно обновлялся - старый улетучивался в космос , а вместо него в атмосферу поступал свежий - «выдыхаемый» Землей.

В литосфере гелия по меньшей мере в 200 тыс. раз больше, чем в атмосфере; еще больше потенциального гелия хранится в «утробе» Земли - в альфа-активных элементах. Но общее содержание этого элемента в Земле и атмосфере невелико. Гелий - редкий и рассеянный газ. На 1 кг земного материала приходится всего 0,003 мг гелия, а содержание его в воздухе - 0,00052 объемного процента. Столь малая концентрация не позволяет пока экономично извлекать гелий из воздуха.

Инертный, но очень нужный гелий

В конце прошлого века английский журнал «Панч» поместил карикатуру, на которой гелий был изображен хитро подмигивающим человечком - жителем Солнца. Текст под рисунком гласил: «Наконец-то меня изловили и на Земле! Это длилось достаточно долго! Интересно знать, сколько времени пройдет, пока они догадаются, что делать со мной?»

Действительно, прошло 34 года со дня открытия земного гелия (первое сообщение об этом было опубликовано в 1881 г.), прежде чем он нашел практическое применение. Определенную роль здесь сыграли оригинальные физико-технические, электрические и в меньшей мере химические свойства гелия, потребовавшие длительного изучения. Главными же препятствиями были рассеянность и высокая стоимость элемента № 2. Оттого практике гелий был недоступен.

Первыми гелий применили немцы. В 1915 г. они стали наполнять им свои дирижабли, бомбившие Лондон. Вскоре легкий, но негорючий гелий стал незаменимым наполнителем воздухоплавательных аппаратов. Начавшийся в середине 30-х годов упадок дирижаблестроения повлек некоторый спад в производстве гелия, но лишь на короткое время. Этот газ все больше привлекал к себе внимание химиков, металлургов и машиностроителей.

Многие технологические процессы и операции нельзя вести в воздушной среде. Чтобы избежать взаимодействия получаемого вещества (или исходного сырья) с газами воздуха, создают специальные защитные среды; и нет для этих целей более подходящего газа, чем гелий.

Инертный, легкий, подвижный, хорошо проводящий тепло гелий - идеальное средство для передавливания из одной емкости в другую легковоспламеняемых жидкостей и порошков; именно эти функции выполняет он в ракетах и управляемых снарядах. В гелиевой защитной среде проходят отдельные стадии получения ядерного горючего. В контейнерах, заполненных гелием, хранят и транспортируют тепловыделяющие элементы ядерных реакторов. С помощью особых течеискателей, действие которых основано на исключительной диффузионной способности гелия, выявляют малейшие возможности утечки в атомных реакторах или других системах, находящимся под давлением или вакуумом.

Последние годы ознаменованы повторным подъемом дирижаблестроения, теперь на более высокой научно-технической основе. В ряде стран построены и строятся дирижабли с гелиевым наполнением грузоподъемностью от 100 до 3000 т. Они экономичны, надежны и удобны для транспортировки крупногабаритных грузов, таких, как плети газопроводов, нефтеочистительные установки, опоры линий электропередач и т. п. Наполнение из 85% гелия и 15% водорода огнебезопасно и только на 7% снижает подъемную силу в сравнении с водородным наполнением.

Начали действовать высокотемпературные ядерные реакторы нового типа, в которых теплоносителем служит гелий.

В научных исследованиях и в технике широко применяется жидкий гелий. Сверхнизкие температуры благоприятствуют углубленному познанию вещества и его строения - при более высоких температурах тонкие детали энергетических спектров маскируются тепловым движением атомов.

Уже существуют сверхпроводящие соленоиды из особых сплавов, создающие при температуре жидкого гелия сильные магнитные поля (до 300 тыс. эрстед) при ничтожных затратах энергии.

При температуре жидкого гелия многие металлы и сплавы становятся сверхпроводниками. Сверхпроводниковые реле - криотроны все шире применяются в конструкциях электронно-вычислительных машин. Они просты, надежны, очень компактны. Сверхпроводники, а с ними и жидкий гелий становятся необходимыми для электроники. Они входят в конструкции детекторов инфракрасного излучения, молекулярных усилителей (мазеров), оптических квантовых генераторов (лазеров), приборов для измерения сверхвысоких частот.

Конечно, этими примерами не исчерпывается роль гелия в современной технике. Но если бы не ограниченность природных ресурсов, не крайняя рассеянность гелия, он нашел бы еще множество применений. Известно, например, что при консервировании в среде гелия пищевые продукты сохраняют свой первоначальный вкус и аромат. Но «гелиевые» консервы пока остаются «вещью в себе», потому что гелия не хватает и применяют его лишь в самых важных отраслях промышленности и там, где без него никак не обойтись. Поэтому особенно обидно сознавать, что с горючим природным газом через аппараты химического синтеза, топки и печи проходят и уходят в атмосферу намного большие количества гелия, чем те, что добываются из гелиеносных источников.

Сейчас считается выгодным выделять гелий только в тех случаях, если его содержание в природном газе не меньше 0,05%. Запасы такого газа все время убывают, и не исключено, что они будут исчерпаны еще до конца нашего века. Однако проблема «гелиевой недостаточности» к этому времени, вероятно, будет решена - частично за счет создания новых, более совершенных методов разделения газов, извлечения из них наиболее ценных, хотя и незначительных по объему фракций, и частично благодаря управляемому термоядерному синтезу. Гелий станет важным, хотя и побочным, продуктом деятельности «искусственных солнц».

ИЗОТОПЫ ГЕЛИЯ, В природе существуют два стабильных изотопа гелия: гелий-3 и гелий-4. Легкий изотоп распространен на Земле в миллион раз меньше, чем тяжелый. Это самый редкий из стабильных изотопов, существующих на нашей планете. Искусственным путем получены еще три изотопа гелия. Все они радиоактивны. Период полураспада гелия-5 - 2,440-21 секунды, гелия-6 - 0,83 секунды, гелия-8 - 0,18 секунды. Самый тяжелый изотоп, интересный тем, что в его ядрах на один протон приходится три нейтрона, впервые получен в Дубне в 60-х годах. Попытки получить гелий-10 пока были неудачны.

ПОСЛЕДНИЙ ТВЕРДЫЙ ГАЗ. В жидкое и твердое состояние гелий был переведен самым последним из всех газов. Особые сложности сжижения и отверждения гелия объясняются строением его атома и некоторыми особенностями физических свойств. В частности, гелий, как и водород, при температуре выше - 250°C, расширяясь, не охлаждается, а нагревается. С другой стороны, критическая температура гелия крайне низка. Именно поэтому жидкий гелий впервые удалось получить лишь в 1908, а твердый - в 1926 г.

ГЕЛИЕВЫЙ ВОЗДУХ. Воздух, в котором весь азот или большая его часть заменена гелием, сегодня уже не новость. Его широко используют на земле, под землей и под водой.

Гелиевый воздух втрое легче и намного подвижнее обычного воздуха. Он активнее ведет себя в легких - быстро подводит кислород и быстро эвакуирует углекислый газ. Вот почему гелиевый воздух дают больным при расстройствах дыхания и некоторых операциях. Он снимает удушья, лечит бронхиальную астму и заболевания гортани.

Дыхание гелиевым воздухом практически исключает азотную эмболию (кессонную болезнь), которой при переходе от повышенного давления к нормальному подвержены водолазы и специалисты других профессий, работа которых проходит в условиях повышенного давления. Причина этой болезни - довольно значительная, особенно при повышенном давлении, растворимость азота в крови. По мере уменьшения давления он выделяется в виде газовых пузырьков, которые могут закупорить кровеносные сосуды, повредить нервные узлы... В отличие от азота, гелий практически нерастворим в жидкостях организма, поэтому он не может быть причиной кессонной болезни. К тому же гелиевый воздух исключает возникновение «азотного наркоза», внешне сходного с алкогольным опьянением.

Рано или поздно человечеству придется научиться подолгу жить и работать на морском дне, чтобы всерьез воспользоваться минеральными и пищевыми ресурсами шельфа. А на больших глубинах, как показали опыты советских, французских и американских исследователей, гелиевый воздух пока незаменим. Биологи доказали, что длительное дыхание гелиевым воздухом не вызывает отрицательных сдвигов в человеческом организме и не грозит изменениями в генетическом аппарате: гелиевая атмосфера не влияет на развитие клеток и частоту мутаций. Известны работы, авторы которых считают гелиевый воздух оптимальной воздушной средой для космических кораблей, совершающих длительные полеты во Вселенную.

НАШ ГЕЛИЙ. В 1980 г. группа ученых и специалистов во главе с И. Л. Андреевым была удостоена Государственной премии за создание и внедрение технологии получения гелиевых концентратов из сравнительно бедных гелиеносных газов. На Оренбургском газовом месторождении построен гелиевый завод, ставший главным нашим поставщиком «солнечного газа» для нужд разных отраслей.

ГЕЛИЕВЫЙ КОМПЛЕКС. В 1978 г. академику В. А. Легасову с сотрудниками при распаде ядер трития, включенных в молекулу аминокислоты глицина, удалось зарегистрировать парамагнитный гелийсодержащий комплекс, в котором наблюдалось сверхтонкое взаимодействие ядра гелия-3 с неспаренным электроном. Это пока наибольшее достижение в химии гелия.







2024 © uzbek-seks.ru.