Буферизованная память на десктоп. Микропроцессорная, регистровая и основная память. Что такое ECC-память


Между микросхемами памяти и системным контроллером памяти . Наличие регистров уменьшает электрическую нагрузку на контроллер и позволяет устанавливать больше модулей памяти в одном канале. Регистровая память является более дорогой из-за меньшего объема производства и наличия дополнительных микросхем. Обычно используется в системах, требующих масштабируемости и отказоустойчивости в ущерб дешевизне (например в серверах). Хотя большая часть модулей памяти для серверов является регистровой и использует ECC , существуют как регистровые модули без ECC так и модули с ECC но без регистров (UDIMM ECC).

Из-за использования регистров возникает дополнительная задержка при работе с памятью. Каждое чтение и запись буферизуются в регистре на один такт, прежде чем попадут с шины памяти в чип DRAM, поэтому регистровая память считается на один такт более медленной чем нерегистровая (UDIMM , unregistered DRAM). Для памяти SDRAM , эта задержка существенна только для первого цикла в серии запросов (burst).

Буферизации в регистровой памяти подвергаются только сигналы управления и выставления адреса.

Буферизованная память (Buffered memory ) - более старый термин для обозначения регистровой памяти.

Некоторые новые системы используют полностью буферизованную память FB-DIMM , в которой производится буферизация не только управляющих линий, но и линий данных при помощи специального контроллера AMB, расположенного на каждом модуле памяти.

Техника регистровой памяти может применяться к различным поколениям памяти, например: DDR DIMM , DDR2 DIMM , DDR3 DIMM

Примечания

Литература

  • Memory systems: cache, DRAM, disk; раздел 10.3.3 Registered Memory Module (DIMM)

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Регистровая память" в других словарях:

    регистровая память - буферизованная память (устар.) [Интент] Registered memory, also called buffered memory, is more stable than unbuffered memory. Тематики информационные технологии в целом Синонимы буферизованная память (устар.) EN buffered memoryregister… … Справочник технического переводчика

    НЖМД объёмом 45 Мб 1980 х годов выпуска, и 2000 х годов выпуска Модуль оперативной памяти, вставленный в материнскую плату Компьютерная память (устройство хранения информации, запоминающее устройство) часть вычислительной машины, физическое… … Википедия

    НЖМД объёмом 44 Мб 1980 х годов выпуска и CompactFlash на 2 Гб 2000 х годов выпуска … Википедия

    НЖМД объёмом 45 Мб 1980 х годов выпуска, и 2000 х годов выпуска Модуль оперативной памяти, вставленный в материнскую плату Компьютерная память (устройство хранения информации, запоминающее устройство) часть вычислительной машины, физическое… … Википедия

    НЖМД объёмом 45 Мб 1980 х годов выпуска, и 2000 х годов выпуска Модуль оперативной памяти, вставленный в материнскую плату Компьютерная память (устройство хранения информации, запоминающее устройство) часть вычислительной машины, физическое… … Википедия

    НЖМД объёмом 45 Мб 1980 х годов выпуска, и 2000 х годов выпуска Модуль оперативной памяти, вставленный в материнскую плату Компьютерная память (устройство хранения информации, запоминающее устройство) часть вычислительной машины, физическое… … Википедия

    Участок материнской платы между контроллером памяти (справа под радиатором) и разъемами для FBDIMM (слева). Установлено 2 модуля, по центру каждого модуля на правой стороне виден большой чип AMB. Пары проводников в центре … … Википедия

    Адресация осуществление ссылки (обращение) к устройству или элементу данных по его адресу; установление соответствия между множеством однотипных объектов и множеством их адресов; метод идентификации местоположения объекта. Содержание … Википедия

    Методы адресации в вычислительной технике способы указания на определённую ячейку (ячейки) памяти ЭВМ процессору с целью записи, чтения данных или передачи управления. Содержание 1 Задача адресации 2 Способы адресации … Википедия

Регистровый файл (register file), или регистровая память , - совокупность устройств памяти процессора - т.н. регистров, предназначенных для временного хранения управляющей информации, операндов и/или результатов выполняемых команд. Регистровый файл обычно включает в себя регистры общего назначения (general-purpose register) и специальные регистры (special-purpose register).

Регистры общего назначения (РОН) состоят из доступных для программ пользователей регистров, предназначенных для хранения операндов, адресов операндов, результатов выполнения команд. Скорость доступа к содержимому регистров сравнима со скоростью обработки информации процессором, поэтому одной из основных причин появления регистров общего назначения было сглаживание дисбаланса в производительности процессора и скорости доступа к оперативной памяти. Наиболее часто используемые в программе операнды размещались на регистрах общего назначения, тем самым происходило сокращение количества реальных обращений в оперативную память, что, в итоге, повышало суммарную производительность компьютера. Состав регистров общего назначения существенно зависит от архитектуры конкретного компьютера.

Специальные регистры предназначены для координации информационного взаимодействия основных компонентов процессора. В их состав могут входить специальные регистры, обеспечивающие управление устройствами компьютера, регистры, содержимое которых используется для представления информации об актуальном состоянии выполняемой процессором программы и т.д. Так же, как и в случае регистров общего назначения, состав специальных регистров определяется архитектурой конкретного процессора. К наиболее распространенным специальным регистрам относятся: счетчик команд (program counter), указатель стека (stack pointer), слово состояния процессора (processor status word). Счетчик команд - специальный регистр, в котором размещается адрес очередной выполняемой команды программы. Счетчик команд изменяется в устройстве управления согласно алгоритму, заложенному в программу. Более подробно использование счетчика команд проиллюстрируем несколько позднее при рассмотрении рабочего цикла процессора. Указатель стека - регистр, содержимое которого в каждый момент времени указывает на адрес слова в области памяти, являющегося вершиной стека. Обычно данный регистр присутствует в процессорах, система команд которых поддерживает работу со стеком (операции чтения и записи данных из/в стек с автоматической коррекцией значения указателя стека). Слово состояния процессора - регистр, содержимое которого определяет режимы работы процессора, значения кодов результата операций и т.п.

Конец работы -

Эта тема принадлежит разделу:

Операционные системы

Факультет вычислительной математики и кибернетики.. курынин р в машечкин и в терехин а н.. операционные системы..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основы архитектуры вычислительной системы
Современный компьютер и его программное обеспечение невозможно рассматривать в отдельности друг от друга. Рассматривая функционирование компьютера, мы всегда имеем в виду функционирование системы,

Структура ВС
Традиционным представлением структуры вычислительной системы является пирамида (Рис. 4). Каждый из уровней пирамиды определяет свой уровень абстракции свойств вычислительной системы. Основанием явл

Аппаратный уровень ВС
Итак, аппаратный уровень вычислительной системы определяется набором аппаратных компонентов и их характеристик, используемых вышестоящими уровнями иерархии и оказывающих влияние на эти уровни. С по

Управление физическими ресурсами ВС
Уровень управления физическими ресурсами - это первый уровень системного программного обеспечения вычислительной системы. Его назначение - систематизация и стандартизация правил пр

Системы программирования
Прежде чем начать рассматривать следующий уровень структурной организации вычислительных систем, обратимся к последовательности этапов, традиционно связываемых с разработкой и внедрением програ

Прикладные системы
Итак, мы переходим к вершине структурной организации вычислительных систем - к уровню прикладного программного обеспечения. Прикладная система - это програм

Основы компьютерной архитектуры
Изучение принципов структурной организации и функционирования основных компонентов операционной системы невозможно без рассмотрения основ архитектуры компьютера. Настоящая глава посвящена рассмотре

Структура, основные компоненты
Середина 40-х годов прошлого века может вправе считаться сроком зарождения современной вычислительной техники. С этой датой связана публикация американского математика венгерского происхождения Джо

Оперативное запоминающее устройство
Оперативное запоминающее устройство (RAM - Random-Access Memory) - это устройство хранения данных компьютера, в котором находится исполняемая в данный момент программа. ОЗУ еще называют основной па

Центральный процессор
Процессор, или центральный процессор (ЦП), компьютера обеспечивает последовательное выполнение машинных команд, составляющих программу, размещенну

Устройство управления. Арифметико-логическое устройство
Устройство управления (control unit) - устройство, которое координирует выполнение команд программы процессором. Арифметико-логическое устройство (arithmetic/logic

КЭШ-память
Ключевой проблемой функционирования компьютеров является проблема несоответствия производительности центрального процессора и скорости доступа к информации, размещенной в оперативной памяти. Мы рас

Аппарат прерываний
Если мы обратим внимание на представленный выше рабочий цикл процессора, то увидим, что такая схема не предусматривает возможности обработки ошибочной ситуации, которая может возникнуть в системе в

Внешние устройства
Внешние устройства во многом определяют эксплуатационные характеристики как компьютера, так и вычислительной системы в целом. Размер экрана монитора, объем и производительность магнитных дисков

Внешние запоминающие устройства
Внешние запоминающие устройства (ВЗУ) предназначены для организации хранения данных и программ. Обычно операции чтения или записи с ВЗУ происходят некоторыми порциями данных, которые называются

Модели синхронизации при обмене с внешними устройствами
Важной характеристикой, во многом определяющей эффективность функционирования вычислительной системы, является модель синхронизации, поддерживаемая аппаратурой компьютера при взаимодействии централ

Потоки данных. Организация управления внешними устройствами
При рассмотрении работы любого компьютера имеют место два потока информации. Первый поток - это управляющая информация, второй поток - это поток данных, над которыми осуществляется обработка в прог

Иерархия памяти
Рассматривая вычислительную систему, или компьютер, можно выстроить некоторую последовательность устройств, предназначенных для хранения информации в некотором ранжированном порядке, иерархии. Этот

Аппаратная поддержка операционной системы и систем программирования
Если мы обратим свое внимание на рассмотрение компьютеров первого поколения, то это были компьютеры (computer - вычислитель) в прямом смысле слова, т.е. производители первых компь

Требования к аппаратуре для поддержки мультипрограммного режима
Выше уже речь уже шла о мультипрограммном режиме, когда в обработке могут находиться две и более программы пользователей, и каждая из этих программ может находиться в одном из трех

Проблемы, возникающие при исполнении программ
Рассмотрим круг проблем, которые, так или иначе, возникают при исполнении программ. Вложенные обращения к подпрограммам (Рис. 44). Несколько лет назад проводились исследов

Регистровые окна
Одно из более или менее новых решений, предназначенное для минимизации накладных расходов, связанных с обращениями к подпрограммам, основано на использовании в современных процессорах т.н.

Системный стек
Будем рассматривать системы, в которых имеется аппаратная поддержка стека. Это означает, что имеется регистр, который ссылается на вершину стека, и есть некоторый механизм, который поддерживает раб

Виртуальная память
Следующий аппарат компьютера, который также сильно связан с поддержкой программного обеспечения, - это аппарат виртуальной памяти. Что понимается под виртуальной памятью и в

Многомашинные, многопроцессорные ассоциации
В настоящее время одиночный компьютер можно сравнить с телефонным аппаратом без телефонной сети. Т.е., говоря об ЭВМ, мы подразумеваем машину в некотором окружении и взаимодействии с другими ма

Терминальные комплексы (ТК)
Терминальный комплекс - это многомашинная ассоциация, предназначенная для организации массового доступа удаленных и локальных пользователей к ресурсам некоторой вычислительной

Компьютерные сети
Развитие терминальных комплексов положило основу развития компьютерных сетей. И следующим шагом стала замена терминальных устройств компьютерами. Компьютерная сеть - э

Основы архитектуры операционных систем
Этот раздел мы начнем с определения базовых понятий, среди которых очень важным для нас станет понятие операционной системы. Этот термин имеет различные толкования в разных изданиях, мы остановимся

Структура ОС
Существует множество взглядов, касающихся структуры операционной системы, и в этом разделе речь пойдет о некоторых из них. Простейшая структурная организация основана на представлении опер

Логические функции ОС
Рассматривая ОС, ее функциональность можно представить в виде объединения некоторого фиксированного количества блоков функций. Состав этого набора варьирует от системы к системе, но в большинстве с

Типы операционных систем
Операционные системы можно классифицировать с точки зрения критериев эффективности и стратегий использования центрального процессора. Можно выделить три основных класса операционных систем:

Основные концепции
Выше уже встречалось понятие процесса и некоторые его определения. Итак, под процессом понимается совокупность машинных команд и данных, обрабатываем

Модели операционных систем
Ниже будем рассматривать некоторую модельную операционную систему. Будем считать, что этапы жизненного цикла процесса разделены на два блока. Первый блок - это размещение процесса,

Типы процессов
Рассматривая процесс в той или иной операционной системе, можно обнаружить, что встречается деление процессов на две категории: т.н. полновесные процессы и легков

Контекст процесса
Говоря о различных механизмах, происходящих в системе, часто затрагивался термин контекст процесса. Под контекстомпроцесса мы будем понимать совокупн

Процесс ОС Unix
Механизм управления и взаимодействия процессов в ОС Unix послужил во многом основой для развития операционных систем в целом, и логического блока управления процессами в частности. Во многом органи

Базовые средства управления процессами в ОС Unix
Рассмотрим теперь, что происходит при обращении к системному вызову fork(). При обращении процесса к данному системному вызову операционная система создает копию текущего процесса, т.е.

Жизненный цикл процесса. Состояния процесса
Рассмотрим обобщенную и несколько упрощенную схему жизненного цикла процессов в ОС Unix (Рис. 79). Можно выделить целую совокупность состояний, в которых может находиться процесс.

Формирование процессов 0 и 1
Все механизмы взаимодействия процессов в ОС Unix унифицированы и основываются на связке системных вызовов fork-exec. Абсолютно все процесс в ОС Unix создается по приведенной схеме, но сущест

Способы организации взаимного исключения
В этом разделе речь пойдет о способах, позволяющих обеспечить работу с критическими ресурсами, т.е. тот способ работы с разделяемым ресурсом, при котором в любой момент времени с ним может работать

Базовые средства реализации взаимодействия процессов в ОС Unix
Сразу необходимо отметить, что во всех иллюстрациях организаций взаимодействия процессов будем рассматривать полновесные процессы, т.е. те «классические» процессы, которые представляются в вид

Сигналы
В ОС Unix присутствует т.н. аппарат сигналов, позволяющий одним процессам оказывать воздействия на другие процессы. Сигналы могут рассматриваться как средство уведомления пр

Неименованные каналы
Неименованный канал (или программный канал) представляется в виде области памяти на внешнем запоминающем устройстве, управ

Именованные каналы
Файловая система ОС Unix поддерживает некоторую совокупность файлов различных типов. Файловая система рассматривает каталоги как файлы специального типа каталог, обычные файлы, с которым мы

Очередь сообщений IPC
Система предоставляет возможность создания некоторого функционально расширенного аналога канала, но главное отличие заключается в том, что сообщения в очереди сообщений IPC типизированы. Каждое соо

Массив семафоров IPC
Семафоры представляют собой одну из форм IPC и используются для организации синхронизации взаимодействующих процессов. Рассмотрение функций для работы с семафорами мы начнем традиционно с функции с

Основные концепции
Под файловой системой (ФС) мы будем понимать часть операционной системы, представляющую собой совокупность организованных наборов данных, хранящихся на внешних запомина

Структурная организация файлов
С точки зрения структурной организации файлов имеется целый спектр различных подходов. Существует некоторая установившаяся систематизация методов структурной организации файлов. Рассмотрим модели в

Атрибуты файлов
Каждый файл обладает фиксированным набором параметров, характеризующих свойства и состояния файла, причем и долговременное (стратегическое), и оперативное состояния. Совокупность этих параметров на

Основные правила работы с файлами. Типовые программные интерфейсы
Практически все файловые системы при организации работы с файлами действуют по схожим сценариям, которые в общем случае состоят из трех основных блоков действий. Во-первых, это нач

Подходы в практической реализации файловой системы
Рассмотрим некоторые подходы в практической реализации файловой системы. Снова вернемся к понятию системного устройства - устройства, на котором, как считается аппарату

Модели реализации файлов
Первой тривиальной и самой эффективной с точки зрения минимизации накладных расходов является модель непрерывных файлов(Рис. 97). Данная модель подразумевает размещение каждого фай

Модели реализации каталогов
Существуют несколько подходов организации каталогов. Во-первых, каталог может представляться в виде таблицы, у которой в одной колонке находятся имена файлов, а в остальных - все атрибуты. Эта моде

Соответствие имени файла и его содержимого
Еще один момент, на который стоит обратить внимание при рассмотрении организации файловых систем, - это проблема соответствия между именем файла и содержимым этого файла. Как отмечалось вы

Координация использования пространства внешней памяти
С точки зрения организации использования пространства внешней памяти файловой системой существует несколько аспектов, на которые необходимо обратить внимание. Первый момент связан с проблемой выбор

Квотирование пространства файловой системы
Как отмечалось выше, файловая система должна обеспечивать контроль использования двух видов системных ресурсов - это регистрация файлов в каталогах (т.е. контроль количества имен файлов, которое мо

Надежность файловой системы
Понятие надежности файловой системы включает в себя множество требований, среди которых, в первую очередь, можно выделить то, что системные данные файловой системы должны обладать избыточной информ

Проверка целостности файловой системы
Далее речь пойдет о моделях организации контроля и исправления ошибочных ситуаций, связанных с целостностью файловой системы. Обратим внимание, что будет рассматриваться целостность именно файловой

Организация файловой системы ОС Unix. Виды файлов. Права доступа
Файл ОС Unix - это специальным образом именованный набор данных, размещенных в файловой системе. Файлы ОС Unix могут быть разных типов: - обычный файл

Логическая структура каталогов
Одной из характеристик ОС Unix является характеристика, кажущаяся на первый взгляд достаточно странной: система рекомендует размещать системную и пользовательскую информацию по некоторым прави

Работа с массивами номеров свободных блоков
Изначально номера всех свободных блоков файловой системы выстраиваются в единый связный список (Рис. 111), который размещается в нескольких блоках. Первый блок располагается в суперблоке (а значит,

Работа с массивом свободных индексных дескрипторов
Массив номеров свободных индексных дескрипторов - это массив фиксированного количества элементов. Изначально данный массив заполнен номерами свободных индексных дескрипторов. Если происход

Индексные дескрипторы. Адресация блоков файла
Выше уже отмечалось, что индексный дескриптор (Рис. 112) является системной структурой данных, содержащей атрибуты файла, а также всю оперативную информацию об организации и

Файл-каталог
Каталог файловой системы версии System V - это файл специального типа, его содержимое так же, как и у регулярных файлов, находится в рабочем пространстве файловой системы и по

Достоинства и недостатки файловой системы модели System V
Среди достоинств рассматриваемой файловой системы стоит отметить, что данная система является иерархичной. Также надо отметить, что за счет использования системного кэширования опт

Стратегии размещения
Работа системы основывается на трех концепциях. Первой концепцией является оптимизация размещения каталога. При создании каталога система осуществляет поиск кластера, наиболее своб

Внутренняя организация блоков
Размер блока в файловой системе FFS может варьироваться в достаточно широком диапазоне: предельный размер блока - 64 Кбайт. Как отмечалось выше, проблема выбора оптимального размера блока достаточн

Выделение пространства для файла
Рассмотрим алгоритм выделения пространства для файлов на следующем примере. Будем считать, что блок файловой системы поделен на 4 фрагмента. Пускай в системе хранятся файлы petya.txt и vasya.txt (Р

Структура каталога FFS
Каталог файловой системы FFS позволяет использовать имена файлов, длиной до 255 символов (Рис. 120). Каталог состоит из записей переменной длины, состоящих из блоков, размером в 4 байта. Начал

Блокировка доступа к содержимому файла
Организация файловой системы ОС Unix позволяет открывать и работать с одним и тем же файлом произвольному числу процессов. Более того, один и тот же файл может быть многократно открыт в рамках одно

Управление оперативной памятью
Будем говорить о функциях управления оперативной памятью в контексте решения следующих основных задач. Во-первых, это осуществление контроля использования ресурса, т.е. одной из функций операт

Одиночное непрерывное распределение
Данная модель распределения оперативной памяти (Рис. 121) является одной из самых простых и основывается на том, что все адресное пространство подразделяется на два компонента. В одной части памяти

Страничное распределение
Об этой модели распределения оперативной памяти уже шла речь ранее, но тогда перед нами стояла задача лишь ввести читателя в курс дела, в этом же разделе будут обсуждаться более подробно современны

Сегментное распределение
Недостатком страничного распределения памяти является то, что при реализации этой модели процессу выделяется единый диапазон виртуальных адресов: от нуля до некоторого предельного значения. С одной

Сегментно-страничное распределение
Естественным развитием рассмотренной модели сегментного распределения памяти стала модель сегментно-страничного распределения. Эта модель рассматривает виртуальный адрес, как номер сегмента и смеще

Архитектура организации управления внешними устройствами
Как отмечалось ранее, при организации взаимодействия работы процессора и внешних устройств различают два потока информации: поток управляющей информации (т.е. поток команд какому-либо устройст

Программное управление внешними устройствами
Рассмотрим архитектуру программного управления внешними устройствами, которую можно представить в виде некоторой иерархии (Рис. 135). В основании лежит аппаратура, а далее следуют

Планирование дисковых обменов
Рассмотрим различные стратегии организации планирования дисковых обменов. При этом преследуется цель проиллюстрировать то многообразие подходов к решению данной проблемы, которые имеют место в мире

RAID-системы. Уровни RAID
Аббревиатура RAID может раскрываться двумя способами. RAID - Redundant Array of Independent (Inexpensive) Disks, или избыточный массив независимых (недорогих) дисков. На сегодняшний день обе расшиф

Файлы устройств, драйверы
Как уже неоднократно упоминалось, одной из основных особенностей ОС Unix является концепция файлов: практически все, с чем работает система, представляется в виде файлов. Внешние устройства не

Системные таблицы драйверов устройств
Для регистрации драйверов в системе используются две системные таблицы: таблицы блок-ориентированных устройств - bdevsw, и таблица байт-ориентированных устройств - cdevsw

Ситуации, вызывающие обращение к функциям драйвера
Список ситуаций, при которых происходит обращение к функциям драйверов, четко детерминирован. Во-первых, это старт системы и инициализация устройств и драйверов. При старте системы она имеет перече

Включение, удаление драйверов из системы
Изначально Unix-системы предполагали, как и большинство систем, «жесткие» статические встраивание драйверов в код ядра. Это означало, что при добавлении нового драйвера или удалении существующего н

Организация обмена данными с файлами
В этом разделе мы рассмотрим механизм организации обмена данными с файлами, после чего станет понятным, что происходит в системе, когда один и тот же файл открывается в системе одновременно несколь

Буферизация при блок-ориентированном обмене
Одним из достоинств ОС Unix является организация многоуровневой буферизации при выполнении неэффективных действий . В частности, для организации блок-ориентированных обменов система использует

Борьба со сбоями
Так или иначе, но в ОС Unix есть ряд традиционных средств для минимизации ущерба при отказах. Во-первых, в системе может быть задан параметр, определяющий промежутки времени, через которые осуществ

Очень часто при выборе комплектующих мы сталкиваемся с различными непонятными терминами и понятиями. При выборе оперативной памяти это может быть DDR, DDR2, DDR3, DDR4, RDRAM, RIMM и т.п. Если с основными типами ОЗУ всё более-менее понятно, а поддержка каждого типа указана в описании к материнской плате, то такой параметр, как ECC у многих вызывает некоторые вопросы. Что такое ECC-память? Можно ли использовать ECC оперативку на домашнем компьютере и в чём главное отличие ECC RAM и non-ECC RAM?

Что такое ECC-память?

Это особый вид оперативной памяти со встроенными аппаратными средствами коррекции ошибок. Подобные модули памяти были разработаны специально для серверов, где требования к корректности данных и надёжности их обработки значительно выше чем на персональных компьютерах.

ECC-Ram автоматически распознаёт спонтанные изменения данных в блоках хранения, то есть возникшие ошибки. Обычная — десктопная память без поддержки механизмов коррекции называется non-ECC.

На что способна ECC-память и как это работает?

Память с коррекцией ошибок может определить и исправить 1 бит изменённых данных в каждом машинном слове. Что это значит? Если данные между записью и чтением были по каким-либо причинам изменены (то есть возникла ошибка), то ECC ОЗУ скорректирует значение до верного. Подобная функциональность требует поддержки со стороны контроллера оперативной памяти. Эта поддержка может быть организована со стороны чипсета материнской платы, встроенного контроллера ОЗУ в современные процессоры.

Алгоритм исправления ошибок основан на коде Хэмминга, но для исправления более одной ошибки применяются прочие алгоритмы. На практике используются модули памяти, где для каждых 8 микросхем памяти добавляется ещё по одной микросхеме, хранящей ECC-коды (8 бит на каждые 64 бита основной памяти).

Почему искажается значение в ячейках памяти RAM?

Одна из основных причин искажения данных — космические лучи. Хотя мы находимся на Земле под защитой атмосферы, космические лучи несут с собой некие элементарные частицы, способные влиять на электронику, в том числе, на компьютерную память. Под действием энергии этих частиц возможно изменение состояния ячейки памяти, что ведёт к искажению данных и возникновению ошибок. Интересно, что воздействие космических лучей увеличивается с ростом высоты, поэтому компьютерные системы, находящиеся на большой высоте требуют лучшей защиты.

Как работает память с поддержкой ECC

Один из механизмов контроля ошибок в оперативной памяти — использовать технологию контроля чётности, что позволяет фиксировать факт возникновения ошибки в данных, но не позволяет скорректировать данные.

Для ECC коррекции используется код Хэмминга. ECC защищает компьютерные системы от некорректной работы в связи с порчей памяти и снижает вероятность критического отказа системы. Память с поддержкой ECC работает на 2-3 % медленнее чем non-ECC в зависимости от приложений.

Причины использовать ЕСС-память

Объективных причин использовать оперативную память с поддержкой ECC в настольных компьютерах нет. Так как вероятность возникновения ошибок данных крайне мала, то в обычных сценариях использования ПК крайне маловероятно, что возникновение ошибки приведёт к возникновению проблем или критических сбоев в работе ПК. Самый страшный сценарий — появление синего экрана смерти BSOD. Кроме того, использование ECC-ОЗУ затруднено тем, что настольные процессоры и материнские платы в своём большинстве не поддерживают данный тип оперативной памяти.

Использование оперативки с коррекцией ошибок ECC актуально для сервером и корпоративного сегмента, где требования к отказоустойчивости и надёжности очень высоки, а корректность данных может влиять на результаты вычислений и работу системы в целом.

Как Вам? -

Аннотация: Рассматривается принцип действия регистров как элементов электронной памяти.

Регистр - это ИМС средней степени интеграции, предназначенная для запоминания и хранения многоразрядного слова .

Регистр-защелка

Простейший регистр представляет собой параллельное соединение нескольких триггеров (рис. 8.1 ,а). УГО регистра-защелки приведена на рис. 8.1 ,б. Если регистр построен на триггерах-защелках, то его называют регистр- "защелка". Как правило, в состав ИС регистра входят буферные усилители и элементы управления, например как показано на рис. 8.2 ,а. Здесь изображена функциональная схема 8-разрядного D -регистра-защелки КР580ИР82 с тремя состояниями на выходе. Его УГО представлено на рис. 8.2 ,б.


Рис. 8.1. Четырёх-разрядный регистр-"защелка" с прямыми выходами: а - функциональная схема; б - УГО

Третьим состоянием (первые два - это логический 0 и логическая 1) называется состояние выходов ИС, при котором они отключены и от источника питания, и от общей точки. Другие названия этого состояния - состояние высокого сопротивления, высокоимпедансное состояние, Z-состояние [ , с. 61 - 63; , с. 68 - 70].

Достигается это третье состояние специальным схемным решением [ , с. 117 - 118] в выходной части логических элементов, когда выходные транзисторы логических элементов заперты и не подают на выход ни напряжения питания, ни потенциала земли (не 0 и не 1).

Регистр КР580ИР82 состоит из 8 функциональных блоков (рис. 8.2 ,а). В каждый из них входит D -триггер-защелка с записью по заднему фронту и мощный выходной вентиль на 3 состояния. STB - стробирующий вход, - разрешение передачи - сигнал, управляющий третьим состоянием: если , то происходит передача информации со входов на соответствующие выходы , если же , все выходы переводятся в третье состояние. При и ИС работает в режиме шинного формирователя - информация со входов передается на выходы в неизменном виде.

При подаче на заднего фронта сигнала происходит "защелкивание" передаваемой информации в триггерах, то есть там запоминается то, что было на момент подачи . Пока , буферный регистр будет хранить эту информацию, независимо от информации на D -входах. При подаче переднего фронта при сохранении состояние выходов будет изменяться в соответствии с изменением на соответствующих входах . Если же , то все выходные усилители переводятся в третье состояние. При этом, независимо от состояния входов, все выходы регистра переводятся в третье состояние.

Все выводы регистра могут иметь активный нулевой уровень, что отображается на УГО в виде инверсных сигналов и обозначений выводов.

Существует множество разновидностей регистров , например, сдвиговые регистры [ , глава 8], в которых триггеры соединены между собой таким образом, что передают информацию последовательно от одного триггера к другому [ , стр. 109 - 122], но мы здесь остановимся на регистре-защелке и его применении.

Регистровая память

Регистровая память - register file - это сверхоперативное запоминающее устройство (СОЗУ) - схема из нескольких регистров, предназначенная для хранения нескольких многоразрядных слов .

На рис. 8.3 показан пример реализации СОЗУ , состоящего из четырех 8-разрядных регистров (подключение RG2 и RG3 не показано, оно осуществляется аналогично). Данное СОЗУ имеет информационный объем 4x8 бит - 4 слова по 8 бит, или 4 байта. Здесь DI - data input - входная шина данных, DO - data output - выходная шина данных, WR - сигнал записи в СОЗУ, RD - сигнал чтения информации из СОЗУ, ВШД - внутренняя шина данных.

Каждый регистр имеет двухразрядный адрес, который подается на входы дешифратора. Например, крайний левый на рис. 8.3 регистр RG1 имеет адрес , следующий - (не показан на рисунке), далее - (не показан), а крайний справа регистр RG4 имеет адрес .

При наличии активного сигнала записи дешифратор в соответствии с кодом адреса выдает на один из регистров активный сигнал , по которому информация с входной шины данных DI записывается в выбранный регистр . По заднему фронту информация в этом регистре "защелкивается".

Если, например, на DI подана информация , и адрес регистра равен , тогда активный сигнал на выходе "3" дешифратора будет подан как на регистр RG4. На остальных регистрах в это время будет неактивный уровень сигнала , поэтому информация с входной шины данных будет записана в RG4, в остальных регистрах будет храниться записанная ранее информация.

При активном сигнале чтения активизируются все 8 мультиплексоров (на схеме показаны первый, второй и восьмой, остальные подключены аналогичны), поскольку на их разрешающие входы подан активный сигнал . В соответствии с поданным на дешифратор адресом , мультиплексоры коммутируют на выходную шину данных информацию с выбранного регистра. Например, , адрес регистра равен . Тогда на всех мультиплексорах будет , все они начинают выбирать информацию в соответствии с адресом . Поэтому на выходную шину DO будут поданы разряды внутренней шины с номерами 25 - с первого мультиплексора, 26 - со второго, 27 - с третьего, 28 - с четвертого, 29 - с пятого, 30 - с шестого, 31 - с седьмого и 32 - с восьмого мультиплексора. Таким образом, информация, являющаяся копией содержимого регистра RG 4 с адресом передается на выходную шину данных DO - неизменное состояние выхода мультиплексора.

#Registered_DDR4 #Registered_DDR3

Регистровая память (registered, буферизованная, buffered) – вид оперативной памяти, модули которой содержат регистр между микросхемами памяти и контроллером памяти. Обычно используется в системах, требующих масштабируемости и отказоустойчивости. Наличие регистров уменьшает электрическую нагрузку на контроллер памяти, что позволяет устанавливать большее количество модулей памяти на один канал. Таким образом, обеспечение максимального объема памяти, поддерживаемого современными процессорами, возможно только при использовании регистровой памяти

Регистровые модули (RDIMM) необходимы для установки большого объема оперативной памяти по сравнению с небуферизованной памятью DIMM (UDIMM). Стоит учитывать, что модули UDIMM – неважно, с поддержкой ECC или без нее, – не могут работать совместно с RDIMM, причем в некоторых случаях попытка совместить такую память может привести к выходу из строя материнской платы либо модулей памяти. Поэтому, выбирая память, необходимо сразу брать регистровые модули, так как в случае модернизации не придется заменять всю память сервера. Максимальные значения объема памяти, ее частоты и количество модулей приведены в таблице ниже. Также здесь представлена информация о :

UDIMM RDIMM LV RDIMM LRDIMM
Максимальная частота при двух модулях на канал 1333 1600 МГц 1333 МГц 1333 МГц
Максимальная частота при трех модулях на канал Работа в таком режиме не допускается 1333 МГц 1333 МГц 1066 МГц
Максимальный объем памяти на процессор (четырехканальный режим) 64 ГБ
192 ГБ при трех модулях на канал - Dual Rank
256 ГБ при двух модулях на канал - Quad Rank
384 ГБ
Максимальная частота памяти
при максимальном объеме
1066 МГц 1066 МГц - Dual Rank
800 МГц - Quad Rank
1066 МГц - Dual Rank
800 МГц - Quad Rank
1066 МГц
Рабочее напряжение 1.5 В 1.5 В 1.35 В 1.35 В/1.5 В
Потребление энергии
при трех модулях на канал
(на модуль)
4 Вт 4.5 Вт ≤4 Вт 5-6 Вт

Преимущества регистровой памяти прекрасно демонстрируют серверные материнские платы, например SuperMicro X9DR3-LN4F+, на которой имеется 24 слота памяти, по 12 на каждый процессор. Так как процессоры для данной платы поддерживают четырехканальную память, получаем три модуля на канал. Для сравнения – платы для похожих процессоров, не поддерживающих регистровую память, имеют максимум восемь слотов памяти.


Некоторым недостатком регистровой памяти является небольшое уменьшение производительности. Каждое чтение и запись буферизуются в регистре на один такт, прежде чем попадут с шины памяти в чип DRAM, поэтому регистровая память считается на один такт более медленной, чем нерегистровая. Для памяти типа SDRAM, к которой относятся современные DDR3 и DDR4 модули, эта задержка существенна только для первого цикла в серии запросов.






2024 © uzbek-seks.ru.