Буквенное обозначение светодиода на схеме гост. Условное обозначение диодов, варикапов, светодиодов на схемах. Условные графические обозначения электронных компонентов в схемах


ГОСТ 2.730-73

Группа Т52

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Единая система конструкторской документации

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ В СХЕМАХ

Приборы полупроводниковые

Unified system for design documentation. Graphical symbols in diagrams. Semiconductor devices


МКС 01.080.40
31.080

Дата введения 1974-07-01

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Государственным комитетом стандартов Совета Министров СССР

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 16.08.73 N 2002

3. Соответствует СТ СЭВ 661-88

4. ВЗАМЕН ГОСТ 2.730-68 , ГОСТ 2.747-68 в части пп.33 и 34 таблицы

5. ИЗДАНИЕ (апрель 2010 г.) с Изменениями N 1, 2, 3, 4, утвержденными в июле 1980 г., апреле 1987 г., марте 1989 г., июле 1991 г. (ИУС 10-80, 7-87, 6-89, 10-91), Поправкой (ИУС 3-91)

1. Настоящий стандарт устанавливает правила построения условных графических обозначений полупроводниковых приборов на схемах, выполняемых вручную или автоматическим способом во всех отраслях промышленности.

(Измененная редакция, Изм. N 3).

2. Обозначения элементов полупроводниковых приборов приведены в табл.1.

Обозначения элементов полупроводниковых приборов

Таблица 1

Наименование

Обозначение

1. (Исключен, Изм. N 2).

2. Электроды:

база с одним выводом

база с двумя выводами

Р -эмиттер с N- областью

N -эмиттер с P -областью

несколько Р -эмиттеров с N -областью

несколько N -эмиттеров с P -областью

коллектор с базой

несколько коллекторов, например, четыре коллектора на базе

3. Области:

область между проводниковыми слоями с различной электропроводностью

Переход от Р -области к N -области и наоборот

область собственной электропроводности (I -область):

1) между областями с электропроводностью разного типа PIN или NIP

2) между областями с электропроводностью одного типа PIP или NIN

3) между коллектором и областью с противоположной электропроводностью PIN или NIP

4) между коллектором и областью с электропроводностью того же типа PIP или NIN

4. Канал проводимости для полевых транзисторов:

обогащенного типа

обедненного типа

5. Переход PN

6. Переход NP

7. Р -канал на подложке N -типа, обогащенный тип

8. N -канал на подложке P -типа, обедненный тип

9. Затвор изолированный

10. Исток и сток

Примечание. Линия истока должна быть изображена на продолжении линии затвора, например:

11. Выводы полупроводниковых приборов:

электрически не соединенные с корпусом

электрически соединенные с корпусом

12. Вывод корпуса внешний. Допускается в месте присоединения к корпусу помещать точку


(Измененная редакция, Изм. N 2, 3).

3, 4. (Исключены, Изм. N 1).
________________
* Таблицы 2, 3. (Исключены, Изм. N 1).

5. Знаки, характеризующие физические свойства полупроводниковых приборов, приведены в табл.4.

Знаки, характеризующие физические свойства полупроводниковых приборов

Таблица 4

Наименование

Обозначение

1. Эффект туннельный

а) прямой

б) обращенный

2. Эффект лавинного пробоя:

а) односторонний

б) двухсторонний

3-8. (Исключены, Изм. N 2).

9. Эффект Шоттки

6. Примеры построения обозначений полупроводниковых диодов приведены в табл.5.

Примеры построения обозначений полупроводниковых диодов

Таблица 5

Наименование

Обозначение

Общее обозначение

2. Диод туннельный

3. Диод обращенный

4. Стабилитрон (диод лавинный выпрямительный)

а) односторонний

б) двухсторонний

5. Диод теплоэлектрический

6. Варикап (диод емкостной)

7. Диод двунаправленный

8. Модуль с несколькими (например, тремя) одинаковыми диодами с общим анодным и самостоятельными катодными выводами

8а. Модуль с несколькими одинаковыми диодами с общим катодным и самостоятельными анодными выводами

9. Диод Шоттки

10. Диод светоизлучающий

7. Обозначения тиристоров приведены в табл.6.

Обозначения тиристоров

Таблица 6

Наименование

Обозначение

1. Тиристор диодный, запираемый в обратном направлении

2. Тиристор диодный, проводящий в обратном направлении

3. Тиристор диодный симметричный

4. Тиристор триодный. Общее обозначение

5. Тиристор триодный, запираемый в обратном направлении с управлением:

по аноду

по катоду

6. Тиристор триодный выключаемый:

общее обозначение

запираемый в обратном направлении, с управлением по аноду

запираемый в обратном направлении, с управлением по катоду

7. Тиристор триодный, проводящий в обратном направлении:

общее обозначение

с управлением по аноду

с управлением по катоду

8. Тиристор триодный симметричный (двунаправленный) - триак

9. Тиристор тетроидный, запираемый в обратном направлении

Примечание. Допускается обозначение тиристора с управлением по аноду изображать в виде продолжения соответствующей стороны треугольника.

8. Примеры построения обозначений транзисторов с P-N- переходами приведены в табл.7.

Примеры построения обозначений транзисторов

Таблица 7

Наименование

Обозначение

1. Транзистор

а) типа PNP

б) типа NPN с выводом от внутреннего экрана

2. Транзистор типа NPN , коллектор соединен с корпусом

3. Транзистор лавинный типа NPN

4. Транзистор однопереходный с N -базой

5. Транзистор однопереходный с P -базой

6. Транзистор двухбазовый типа NPN

7. Транзистор двухбазовый типа PNIP с выводом от -области

8. Транзистор двухбазовый типа PNIP с выводом от -области

9. Транзистор многоэмиттерный типа NPN

Примечание. При выполнении схем допускается:

а) выполнять обозначения транзисторов в зеркальном изображении, например,

б) изображать корпус транзистора.

9. Примеры построения обозначений полевых транзисторов приведены в табл.8.

Примеры построения обозначений полевых транзисторов

Таблица 8

Наименование

Обозначение

1. Транзистор полевой с каналом типа N

2. Транзистор полевой с каналом типа P

3. Транзистор полевой с изолированным затвором без вывода от подложки:

а) обогащенного типа с Р- каналом

б) обогащенного типа с N- каналом

в) обедненного типа с Р- каналом

г) обедненного типа с N- каналом

4. Транзистор полевой с изолированным затвором обогащенного типа с N- каналом, с внутренним соединением истока и подложки

5. Транзистор полевой с изолированным затвором с выводом от подложки обогащенного типа с Р- каналом

6. Транзистор полевой с двумя изолированными затворами обедненного типа с Р- каналом с выводом от подложки

7. Транзистор полевой с затвором Шоттки

8. Транзистор полевой с двумя затворами Шоттки

Примечание. Допускается изображать корпус транзисторов.

10. Примеры построений обозначений фоточувствительных и излучающих полупроводниковых приборов приведены в табл.9.

Примеры построений обозначений фоточувствительных и излучающих полупроводниковых приборов

Таблица 9

Наименование

Обозначение

1. Фоторезистор:

а) общее обозначение

б) дифференциальный

2. Фотодиод

3. Фоторезистор

4. Фототранзистор:

а) типа PNP

б) типа NPN

5. Фотоэлемент

6. Фотобатарея

11. Примеры построения обозначений оптоэлектронных приборов приведены в табл.10

Примеры построения обозначений оптоэлектронных приборов

Таблица 10

Наименование

Обозначение

1. Оптрон диодный

2. Оптрон тиристорный

3. Оптрон резисторный

4. Прибор оптоэлектронный с фотодиодом и усилителем:

а) совмещенно

б) разнесенно

5. Прибор оптоэлектронный с фототранзистором:

а) с выводом от базы

б) без вывода от базы

В данной статье покажем таблицу графических обозначений радиоэлементов на схеме.

Человек, не знающий графического обозначения элементов радиосхемы, никогда не сможет её «прочесть». Этот материал предназначен для того, чтобы начинающему радиолюбителю было с чего начать. В различных технических изданиях такой материал встречается очень редко. Именно этим он и ценен. В разных изданиях встречаются «отклонения» от государственного стандарта (ГОСТа) в графическом обозначении элементов. Эта разница важна только для органов государственной приёмки, а для радиолюбителя практического значения не имеет, лишь бы был понятен тип, назначение и основные характеристики элементов. Кроме того, в разных странах и обозначение может быть разным. Поэтому, в этой статье приводятся разные варианты графического обозначения элементов на схеме (плате). Вполне может быть, что здесь вы увидите не все варианты обозначения.

Любой элемент на схеме имеет графическое изображение и его буквенно-цифровое обозначение. Форма и размеры графического обозначения определены ГОСТом, но как я писал ранее, не имеют практического значения для радиолюбителя. Ведь если на схеме, изображение резистора будет по размеру меньше чем по ГОСТам, радиолюбитель не перепутает его с другим элементом. Любой элемент обозначается на схеме одной, или двумя буквами (первая обязательно — прописная), и порядковым номером на конкретной схеме. Например R25 обозначает, что это резистор (R), и на изображённой схеме – 25-й по счёту. Порядковые номера, как правило, присваиваются сверху вниз и слева направо. Бывает, когда элементов не больше двух десятков, их просто не нумеруют. Встречается, что при доработках схем, некоторые элементы с «большим» порядковым номером могут стоять не в том месте схемы, по ГОСТу – это нарушение. Явно, заводскую приёмку подкупили взяткой в виде банальной шоколадки, или бутылкой необычной формы дешёвого коньяка. Если схема большая, то найти элемент, стоящий не по порядку бывает затруднительно. При модульном (блочном) построении аппаратуры, элементы каждого блока имеют свои порядковые номера. Ниже вы можете ознакомиться с таблицей, содержащей обозначения и описания основных радиоэлементов, для удобства в конце статьи есть ссылка для скачивания таблицы в формате WORD.

Таблица графических обозначений радиоэлементов на схеме

Графическое обозначение (варианты) Наименование элемента Краткое описание элемента
Элемент питания Одиночный источник электрического тока, в том числе: часовые батарейки; пальчиковые солевые батарейки; сухие аккумуляторные батарейки; батареи сотовых телефонов
Батарея элементов питания Набор одиночных элементов, предназначенный для питания аппаратуры повышенным общим напряжением (отличным от напряжения одиночного элемента), в том числе: батареи сухих гальванических элементов питания; аккумуляторные батареи сухих, кислотных и щелочных элементов
Узел Соединение проводников. Отсутствие точки (кружочка) говорит о том, что проводники на схеме пересекаются, но не соединяются друг с другом – это разные проводники. Не имеет буквенно-цифрового обозначения
Контакт Вывод радиосхемы, предназначенный для «жёсткого» (как правило — винтового) подсоединения к нему проводников. Чаще используется в больших системах управления и контроля электропитанием сложных многоблочных электросхем
Гнездо Соединительный легкоразъёмный контакт типа «разъём» (на радиолюбительском сленге — «мама»). Применяется преимущественно для кратковременного, легко разъединяемого подключения внешних приборов, перемычек и других элементов цепи, например в качестве контрольного гнезда
Розетка Панель, состоящая из нескольких (не менее 2-х) контактов «гнездо». Предназначена для многоконтактного соединения радиоаппаратуры. Типичный пример – бытовая электророзетка «220В»
Штекер Контактный легкоразъёмный штыревой контакт (на сленге радиолюбителей — «папа»), предназначенный для кратковременного подключения к участку электрорадиоцепи
Вилка Многоштеккерный разъем, с числом контактов не менее двух предназначенный для многоконтактного соединения радиоаппаратуры. Типичный пример — сетевая вилка бытового прибора «220В»
Выключатель Двухконтактный прибор, предназначенный для замыкания (размыкания) электрической цепи. Типичный пример – выключатель света «220В» в помещении
Переключатель Трёхконтактный прибор, предназначенный для переключения электрических цепей. Один контакт имеет два возможных положения
Тумблер Два «спаренных» переключателя — переключаемых одновременно одной общей рукояткой. Отдельные группы контактов могут изображаться в разных частях схемы, тогда они могут обозначаться как группа S1.1 и группа S1.2. Кроме того, при большом расстоянии на схеме они могут соединяться одной пунктирной линией
Галетный переключатель Переключатель, в котором один контакт «ползункового» типа, может переключаться в несколько разных положений. Бывают спаренные галетные переключатели, в которых имеется несколько групп контактов
Кнопка Двухконтактный прибор, предназначенный для кратковременного замыкания (размыкания) электрической цепи путём нажатия на него. Типичный пример – кнопка дверного звонка квартиры
Общий провод (GND) Контакт радиосхемы, имеющий условный «нулевой» потенциал относительно остальных участков и соединений схемы. Обычно, это вывод схемы, потенциал которого либо самый отрицательный относительно остальных участков схемы (минус питания схемы), либо самый положительный (плюс питания схемы). Не имеет буквенно-цифрового обозначения
Заземление Вывод схемы, подлежащий подключению к Земле. Позволяет исключить возможное появление вредоносного статического электричества, а также предотвращает поражение от электрического тока в случае возможного попадания опасного напряжения на поверхности радиоприборов и блоков, которых касается человек, стоящий на мокром грунте. Не имеет буквенно-цифрового обозначения
Лампа накаливания Электрический прибор, применяемый для освещения. Под действием электрического тока происходит свечение вольфрамовой нити накала (её горение). Не сгорает нить потому, что внутри колбы лампы нет химического окислителя – кислорода
Сигнальная лампа Лампа, предназначенная для контроля (сигнализирования) состояния различных цепей устаревшей аппаратуры. В настоящее время, вместо сигнальных ламп используют светодиоды, потребляющие более слабый ток и более надёжные
Неоновая лампа Газоразрядная лампа, наполненная инертным газом. Цвет свечения зависит от вида газа-наполнителя: неон – красно-оранжевое, гелий – синее, аргон – сиреневое, криптон – сине-белое. Применяют и другие способы придать определённый цвет лампе наполненной неоном – использование люминесцентных покрытий (зелёного и красного свечения)
Лампа дневного света (ЛДС) Газоразрядная лампа, в том числе колба миниатюрной энергосберегающей лампы, использующая люминесцентное покрытие – химический состав с послесвечением. Применяется для освещения. При одинаковой потребляемой мощности, обладает более ярким светом, чем лампа накаливания
Электромагнитное реле Электрический прибор, предназначенный для переключения электрических цепей, путём подачи напряжения на электрическую обмотку (соленоид) реле. В реле может быть несколько групп контактов, тогда эти группы нумеруются (например Р1.1, Р1.2)
Электрический прибор, предназначенный для измерения силы электрического тока. В своём составе имеет неподвижный постоянный магнит и подвижную магнитную рамку (катушку), на которой крепится стрелка. Чем больше ток, протекающий через обмотку рамки, тем на больший угол стрелка отклоняется. Амперметры подразделяются по номинальному току полного отклонения стрелки, по классу точности и по области применения
Электрический прибор, предназначенный для измерения напряжения электрического тока. Фактически ничем не отличается от амперметра, так как делается из амперметра, путём последовательного включения в электрическую цепь через добавочный резистор. Вольтметры подразделяются по номинальному напряжению полного отклонения стрелки, по классу точности и по области применения
Резистор Радиоприбор, предназначенный для уменьшения тока, протекающего по электрической цепи. На схеме указывается значение сопротивления резистора. Рассеиваемая мощность резистора изображается специальными полосками, или римскими символами на графическом изображении корпуса в зависимости от мощности (0,125Вт – две косых линии «//», 0,25 – одна косая линия «/», 0,5 – одна линия вдоль резистора «-«, 1Вт – одна поперечная линия «I», 2Вт – две поперечных линии «II», 5Вт – галочка «V», 7Вт – галочка и две поперечных линии «VII», 10Вт – перекрестие «Х», и т.д.). У Американцев обозначение резистора – зигзагообразное, как показано на рисунке
Переменный резистор Резистор, сопротивление которого на его центральном выводе регулируется с помощью «ручки-регулятора». Номинальное сопротивление, указанное на схеме – это полное сопротивление резистора между его крайними выводами, которое не регулируется. Переменные резисторы бывают спаренные (2 на одном регуляторе)
Подстроечный резистор Резистор, сопротивление которого на его центральном выводе регулируется с помощью «шлица-регулятора» — отверстия под отвёртку. Как и у переменного резистора, номинальное сопротивление, указанное на схеме – это полное сопротивление резистора между его крайними выводами, которое не регулируется
Терморезистор Полупроводниковый резистор, сопротивление которого изменяется в зависимости от окружающей температуры. При увеличении температуры, сопротивление терморезистора уменьшается, а при уменьшении температуры наоборот, увеличивается. Применяется для измерения температуры в качестве термодатчика, в цепях термостабилизации различных каскадов аппаратуры и т.д.
Фоторезистор Резистор, сопротивление которого изменяется в зависимости от освещённости. При увеличении освещённости, сопротивление терморезистора уменьшается, а при уменьшении освещённости наоборот – увеличивается. Применяется для измерения освещенности, регистрации колебаний света и т.д. Типичный пример – «световой барьер» турникета. В последнее время вместо фоторезисторов чаще используются фотодиоды и фототранзисторы
Варистор Полупроводниковый резистор, резко уменьшающий своё сопротивление при достижении приложенного к нему напряжения определённого порога. Варистор предназначен для защиты электрических цепей и радиоприборов от случайных «скачков» напряжения
Конденсатор Элемент радиосхемы, обладающий электрической ёмкостью, способный накапливать электрический заряд на своих обкладках. Применение в зависимости от величины ёмкости разнообразно, самый распространённый радиоэлемент после резистора
Конденсатор, при изготовлении которого применяется электролит, за счет этого при сравнительно малых размерах обладает намного большей ёмкостью, чем обыкновенный «неполярный» конденсатор. При его применении необходимо соблюдать полярность, в противном случае электролитический конденсатор теряет свои накопительные свойства. Используется в фильтрах питания, в качестве проходных и накопительных конденсаторов низкочастотной и импульсной аппаратуры. Обычный электролитический конденсатор саморазряжается за время не более минуты, обладает свойством «терять» ёмкость вследствие высыхания электролита, для исключения эффектов саморазряда и потери ёмкости используют более дорогие конденсаторы – танталовые
Конденсатор, у которого ёмкость регулируется с помощью «шлица-регулятора» — отверстия под отвёртку. Используется в высокочастотных контурах радиоаппаратуры
Конденсатор, ёмкость которого регулируется с помощью выведенной наружу радиоприёмного устройства рукоятки (штурвала). Используется в высокочастотных контурах радиоаппаратуры в качестве элемента селективного контура, изменяющего частоту настройки радиопередатчика, или радиоприемника
Высокочастотный прибор, обладающий резонансными свойствами подобно колебательному контуру, но на определённой фиксированной частоте. Может применяться на «гармониках» — частотах, кратных резонансной частоте, указанной на корпусе прибора. Часто, в качестве резонирующего элемента используется кварцевое стекло, поэтому резонатор называют «кварцевый резонатор», или просто «кварц». Применяется в генераторах гармонических (синусоидальных) сигналов, тактовых генераторах, узкополосных частотных фильтрах и др.
Обмотка (катушка) из медного провода. Может быть бескаркасной, на каркасе, а может исполняться с использованием магнитопровода (сердечника из магнитного материала). Обладает свойством накопления энергии за счёт магнитного поля. Применяется в качестве элемента высокочастотных контуров, частотных фильтров и даже антенны приёмного устройства
Катушка с регулируемой индуктивностью, у которой имеется подвижный сердечник из магнитного (ферромагнитного) материала. Как правило, мотается на цилиндрическом каркасе. При помощи немагнитной отвёртки регулируется глубина погружения сердечника в центр катушки, тем самым изменяется её индуктивность
Катушка индуктивности, содержащая большое количество витков, которая исполняется с использованием магнитопровода (сердечника). Как и высокочастотная катушка индуктивности, дроссель обладает свойством накопления энергии. Применяется в качестве элементов низкочастотных фильтров звуковой частоты, схем фильтров питания и импульсного накопления
Индуктивный элемент, состоящий из двух и более обмоток. Переменный (изменяющийся) электрический ток, прикладываемый к первичной обмотке, вызывает возникновение магнитного поля в сердечнике трансформатора, а оно в свою очередь наводит магнитную индукцию во вторичной обмотке. В результате на выходе вторичной обмотки появляется электрический ток. Точки на графическом обозначении у краёв обмоток трансформатора обозначают начала этих обмоток, римские цифры – номера обмоток (первичная, вторичная)
Полупроводниковый прибор, способный пропускать ток в одну сторону, а в другую нет. Направление тока можно определить по схематическому изображению – сходящиеся линии, подобно стрелке указывают направление тока. Выводы анода и катода буквами на схеме не обозначаются
Специальный полупроводниковый диод, предназначенный для стабилизации приложенного к его выводам напряжения обратной полярности (у стабистора – прямой полярности)
Специальный полупроводниковый диод, обладающий внутренней ёмкостью и изменяющий её значение в зависимости от амплитуды приложенного к его выводам напряжения обратной полярности. Применяется для формирования частотно-модулированного радиосигнала, в схемах электронного регулирования частотными характеристиками радиоприемников
Специальный полупроводниковый диод, кристалл которого светится под действием приложенного прямого тока. Используется как сигнальный элемент наличия электрического тока в определённой цепи. Бывает различных цветов свечения

Специальный полупроводниковый диод, при освещении которого на выводах появляется слабый электрический ток. Применяется для измерения освещенности, регистрации колебаний света и т.д., подобно фоторезистору
Полупроводниковый прибор, предназначенный для коммутации электрической цепи. При подаче небольшого положительного напряжения на управляющий электрод относительно катода, тиристор открывается и проводит ток в одном направлении (как диод). Закрывается тиристор только после пропадания протекающего от анода к катоду тока, или смены полярности этого тока. Выводы анода, катода и управляющего электрода буквами на схеме не обозначаются
Составной тиристор, способный коммутировать токи как положительной полярности (от анода к катоду), так и отрицательной (от катода к аноду). Как и тиристор, симистор закрывается только после пропадания протекающего от анода к катоду тока, или смены полярности этого тока
Вид тиристора, который открывается (начинает пропускать ток) только при достижении определённого напряжения между его анодом и катодом, и запирается (прекращает пропускать ток) только при уменьшении тока до нуля, или смены полярности тока. Используется в схемах импульсного управления
Биполярный транзистор, который управляется положительным потенциалом на базе относительно эмиттера (стрелка у эмиттера показывает условное направление тока). При этом при повышении входного напряжения база-эмиттер от нуля до 0,5 вольта, транзистор находится в закрытом состоянии. После дальнейшего повышения напряжения от 0,5 до 0,8 вольта транзистор работает как усилительный прибор. На конечном участке «линейной характеристики» (около 0,8 вольта) транзистор насыщается (полностью открывается). Дальнейшее повышение напряжения на базе транзистора опасно, транзистор может выйти из строя (происходит резкий рост тока базы). В соответствии с «учебниками», биполярный транзистор управляется током база-эмиттер. Направление коммутируемого тока в n-p-n транзисторе – от коллектора к эмиттеру. Выводы базы, эмиттера и коллектора буквами на схеме не обозначаются
Биполярный транзистор, который управляется отрицательным потенциалом на базе относительно эмиттера (стрелка у эмиттера показывает условное направление тока). В соответствии с «учебниками», биполярный транзистор управляется током база-эмиттер. Направление коммутируемого тока в p-n-р транзисторе – от эмиттера к коллектору. Выводы базы, эмиттера и коллектора буквами на схеме не обозначаются
Транзистор (как правило — n-p-n), сопротивление перехода «коллектор-эмиттер» которого уменьшается при его освещении. Чем выше освещённость, тем меньше сопротивление перехода. Применяется для измерения освещенности, регистрации колебаний света (световых импульсов) и т.д., подобно фоторезистору
Транзистор, сопротивление перехода «сток-исток» которого уменьшается при подаче напряжения на его затвор относительно истока. Обладает большим входным сопротивлением, что повышает чувствительность транзистора к малым входным токам. Имеет электроды: Затвор, Исток, Сток и Подложку (бывает не всегда). По принципу работы, можно сравнить с водопроводным краном. Чем больше напряжение на затворе (на больший угол повёрнута рукоятка вентиля), тем больший ток (больше воды) течёт между истоком и стоком. По сравнению с биполярным транзистором имеет больший диапазон регулирующего напряжения – от нуля, до десятков вольт. Выводы затвора, истока, стока и подложки буквами на схеме не обозначаются
Полевой транзистор, управляемый положительным потенциалом на затворе, относительно истока. Имеет изолированный затвор. Обладает большим входным сопротивлением, и очень малым выходным сопротивлением, что позволяет малыми входными токами управлять большими выходными токами. Чаще всего, технологически подложка соединена с истоком
Полевой транзистор, управляемый отрицательным потенциалом на затворе, относительно истока (для запоминания р-канал — позитив). Имеет изолированный затвор. Обладает большим входным сопротивлением, и очень малым выходным сопротивлением, что позволяет малыми входными токами управлять большими выходными токами. Чаще всего, технологически подложка соединена с истоком
Полевой транзистор, обладающий теми же свойствами, что и «со встроенным n-каналом» с той разницей, что имеет ещё большее входное сопротивление. Чаще всего, технологически подложка соединена с истоком. По технологии изолированного затвора исполняются MOSFET транзисторы, управляемые входным напряжением от 3 до 12 вольт (в зависимости от типа), имеющие сопротивление открытого перехода сток-исток от 0,1 до 0,001 Ом (в зависимости от типа)
Полевой транзистор, обладающий теми же свойствами, что и «со встроенным p-каналом» с той разницей, что имеет ещё большее входное сопротивление. Чаще всего, технологически подложка соединена с истоком

Электрическая схема - это текст, описывающий определенными символами содержание и работу электротехнического устройства или комплекса устройств, что позволяет в краткой форме выразить этот текст.

Для того чтобы прочесть любой текст, необходимо знать алфавит и правила чтения. Так, для чтения схем следует знать символы - условные обозначения и правила расшифровки их сочетаний.

Основу любой электрической схемы представляют условные графические обозначения различных элементов и устройств, а также связей между ними. Язык современных схем подчеркивает в символах подчеркивает основные функции, которые выполняет в схеме изображенных элемент. Все правильные условные графические обозначения элементов электрических схем и их отдельных частей приводятся в виде таблиц в стандартах.

Условные графические обозначения образуются из простых геометрических фигур: квадратов, прямоугольников, окружностей, а также из сплошных и штриховых линий и точек. Их сочетание по специальной системе, которая предусмотрена стандартом, дает возможность легко изобразить все, что требуется: различные электрические аппараты, приборы, электрические машины, линии механической и электрической связей, виды соединений обмоток, род тока, характер и способы регулирования и т. п.

Кроме этого в условных графических обозначениях на электрических принципиальных схемах дополнительно используются специальные знаки, поясняющие особенности работы того или иного элемента схемы.

Так, например, существует три типа контактов - замыкающий, размыкающий и переключающий. Условные обозначения отражают только основную функцию контакта - замыкание и размыкание цепи. Для указания дополнительных функциональных возможностей конкретного контакта стандартом предусмотрено использование специальных знаков наносимых на изображение подвижной части контакта. Дополнительные знаки позволяют найти на схеме контакты , реле времени, путевых выключателей и т.д.

Отдельные элементы на электрических схемах имеют не одно, а несколько вариантов обозначения на схемах. Так, например, существует несколько равноценных вариантов обозначения переключающих контактов, а также несколько стандартных обозначений обмоток трансформатора. Каждое из обозначений можно применять в определенных случаях.

Если в стандарте нет нужного обозначения, то его составляют, исходя из принципа действия элемента, обозначений, принятых для аналогических типов аппаратов, приборов, машин с соблюдением принципов построения, обусловленных стандартом.

Стандарты. Условные графические обозначения на электрических схемах и схемах автоматизации:

ГОСТ 2.710-81 Обозначения буквенно-цифровые в электрических схемах:

Диоды - простейшие полупроводниковые приборы, основой которых является электронно-дырочный переход (p-n-переход). Как известно, основное свойство p-n-перехода - односторонняя проводимость: от области p (анод) к области n (катод). Это наглядно передает и условное графическое обозначение полупроводникового диода: треугольник (символ анода) вместе с пересекающей его линией электрической связи образуют подобие стрелки, указывающей направление проводимости. Перпендикулярная этой стрелке черточка символизирует катод (рис. 1).

Рис.1. Условное обозначение диодов

Буквенный код диодов - VD. Этим кодом обозначают не только отдельные диоды, но и целые группы, например, выпрямительные столбы (см. рис. 1, VD4). Исключение составляет однофазный выпрямительный мост, изображаемый в виде квадрата с соответствующим числом выводов и символом диода внутри (рис. 2, VD1). Полярность выпрямленного моста напряжения на схемах не указывают, так как ее однозначно определяет символ диода. Однофазные мосты, конструктивно объединенные в одном корпусе, изображают отдельно, показывая принадлежность к одному изделию в позиционном обозначении (см. рис. 2, VD2.1, VD2.2). Рядом с позиционным обозначением диода можно указывать и его тип.

Рис.2. Условное обозначение диодных мостов

На основе базового символа построены и условные графические обозначения полупроводниковых диодов с особыми свойствами. Чтобы показать на схеме стабилитрон, катод дополняют коротким штрихом, направленным в сторону символа анода (рис. 3, VD1). Следует отметить, что расположение штриха относительно символа анода должно быть неизменным независимо от положения обозначения стабилитрона на схеме (VD2-VD4). Это относится и к символу двуханодного (двустороннего) стабилитрона (VD5).

Рис.3. Условное обозначение стабилитронов, варикапов, диодов Шотки

Аналогично построены условные графические обозначения туннельных диодов, обращенных и диодов Шотки - полупроводниковых приборов, используемых для обработки сигналов в области СВЧ. В символе туннельного диода (см. рис. 3, VD8) катод дополнен двумя штрихами, направленными в одну сторону (к аноду), в обозначении диода Шотки (VD10) - в разные стороны; в обозначении обращенного диода (VD9) - оба штриха касаются катода своей серединой.

Свойство обратно смещенного p-n-перехода вести себя как электрическая ёмкость использовано в специальных диодах - варикапах (от слов vari(able) - переменный и cap(acitor) - конденсатор). Условное графическое обозначение этих приборов наглядно отражает их назначение (рис. 3, VD6): две параллельные линии воспринимаются как символ конденсатора. Как и конденсаторы переменной ёмкости, для удобства варикапы часто изготовляют в виде блоков (их называют матрицами) с общим катодом и раздельными анодами. Для примера на рис. 3 показано обозначение матрицы из двух варикапов (VD1).

Базовый символ диода использован и в обозначении тиристоров (от греческого thyra - дверь и английского resistor - резистор) - полупроводниковых приборов с тремя p-n-переходами (структура р-n-p-n), используемых в качестве переключающих диодов. Буквенный код этих приборов - VS.

Тиристоры с выводами только от крайних слоев структуры называют динисторами и обозначают символом диода, перечеркнутым отрезком линии, параллельным катоду (рис. 4, VS1). Такой же прием использован и при построении обозначения симметричного динистора (VS2), проводящего ток (после его включения) в обоих направлениях. Тиристоры с дополнительным, третьим выводом (от одного из внутренних слоев структуры) называют тринисторами . Управление по катоду в обозначении этих приборов показывают ломаной линией, присоединенной к символу катода (VS3), по аноду - линией, продолжающей одну из сторон треугольника, символизирующего анод (VS4). Условное графическое обозначение симметричного (двунаправленного) тринистора получают из символа симметричного динистора добавлением третьего вывода (см. рис.4, VS5).

Рис.4. Условное обозначение динисторов, тринисторов

Из диодов, изменяющих свои параметры под действием внешних факторов, наиболее широко применяют фотодиоды. Чтобы показать такой полупроводниковый прибор на схеме, базовый символ диода помещают в кружок, а рядом с ним (слева вверху, независимо от положения) помещают знак фотоэлектрического эффекта - две наклонные параллельные стрелки, направленные в сторону символа (рис. 5, VD1-VD3). Подобным образом строятся обозначения любого другого полупроводникового диода, управляемого оптическим излучением. На рис. 5 в качестве примера показано условное графическое обозначение фотодинистора VD4.

Рис.5. Условное обозначение фотодиодов

Аналогично строятся условные графические обозначения светоизлучающих диодов, но стрелки, обозначающие оптическое излучение, помещают справа вверху, независимо от положения и направляют в противоположную сторону (рис. 6). Поскольку светодиоды, излучающие видимый свет, применяют обычно в качестве индикаторов, на схемах их обозначают латинскими буквами HL. Стандартный буквенный код D используют только для инфракрасных (ИК) светодиодов.

Рис.6. Условное обозначение светодиодов и светодиодных индикаторов

Для отображения цифр, букв и других знаков часто применяют светодиодные знаковые индикаторы. Условные графические обозначения подобных устройств в ГОСТе формально не предусмотрены, но на практике широко используются символы, подобные HL3, показанному на рис. 6, где изображено обозначение семисегментного индикатора для отображения цифр и запятой. Сегменты подобных индикаторов обозначаются строчными буквами латинского алфавита но часовой стрелке, начиная с верхнего. Этот символ наглядно отражает практически реальное расположение светоизлучающих элементов (сегментов) в индикаторе, хотя и не лишен недостатка; он не несет информации о полярности включения в электрическую цепь (поскольку подобные индикаторы выпускают как с общим анодом, так и с общим катодом, то схемы включения будут различаться). Однако особых затруднений это не вызывает, поскольку подключение общего вывода индикаторов обычно указывают на схеме. Буквенный код знаковых индикаторов - HG.

Светоизлучающие кристаллы широко используют в оптронах - специальных приборах, применяемых для связи отдельных частей электронных устройств в тех случаях, если необходима их гальваническая развязка. На схемах оптроны обозначают буквой U и изображают, как показано на рис. 7.

Рис.7. Условное обозначение оптронов

Оптическую связь излучателя (светодиода) и фотоприемника показывают в этом случае двумя стрелками, перпендикулярными к линиям электрической связи - выводам оптрона. Фотоприемником в оптроне могут быть фотодиод (см. рис. 7, U1), фототиристор U2, фоторезистор U3 и т. д. Взаимная ориентация символов излучателя и фотоприемника не регламентируется. При необходимости составные части оптрона можно изображать раздельно, но в этом случае знак оптической связи следует заменять знаками оптического излучения и фотоэффекта, а принадлежность частей к одному изделию показывать в позиционном обозначении (см. рис. 7, U4.1,U4.2).

Интересно наблюдать, с какой поразительной скоростью сменяют друг друга технологии. Лет тридцать назад мы вполне были довольны электроникой, которой пользовались, простыми автомобилями, где-то неудобными и малоскоростными, скромными домами без евроремонта. Но так устроен человек, что постоянно стремится к чему-то более совершенному, и сейчас практически любая сфера жизни подвержена постоянной модернизации. Коснулся этот процесс также систем индикации и освещения. Так, на смену лампам накаливания пришли более совершенные полупроводниковые элементы - светодиоды.

Излучающий кристалл

История применения полупроводников старше начала использования ламп электронного типа. который считается изобретателем радио, искал с помощью нехитрого полупроводникового устройства наличие радиоволн. Первый диод Попова (детектор) был изготовлен из полупроводникового кристалла, зафиксированного в держателе, и пружинного заостренного контакта из вольфрама или стали. Этот контакт опирался на площадь полупроводника, и в зависимости от точки соприкосновения можно было найти наиболее четкий сигнал радиостанции.

Способность некоторых кристаллов излучать свет под действием тока была обнаружена чуть позже, случайно, но в первое время не использовалась на практике. Теперь же светодиоды широко применяют и в спецтехнике, и в быту.

Что такое светодиод, как он выглядит на схеме?

Светодиодом называется разновидность полупроводникового элемента, имеющего особенность кристалла излучать свет под действием проходящего сквозь него электрического тока. Этот эффект проявляется не у всех полупроводников, а лишь у тех, у которых в процессе рекомбинации электронов и дырок выделение энергии происходит в световом диапазоне. Светодиод, как и обычный диод, имеет p-n-переход и пропускает ток только в одном направлении.

Особенностью светодиода как светоизлучающего прибора является то, что в нем непосредственно происходит выделение квантов света. Это отличает его от ламп накаливания, где сначала происходит разогрев спирали до определенной температуры, или галогенных ламп с эффектом ионизации. Потери энергии в светодиодах минимальны.

Конструктивно в состав светодиода входят подложка с нанесенным на нее кристаллом, выводы для подключения в электрическую цепь и корпус, который одновременно является оптической системой. Обозначение светодиода на схеме имеет определенное графическое выражение, на электронной плате он обозначается специальной кодировкой.

Для чего служит светодиод, и как это отражено в его изображении на схеме?

Светодиод излучает свет, в этом его назначение. И на схематическом изображении это четко обозначено двумя стрелочками, идущими от элемента. Применение устройство получило очень широкое:

Особенности обозначения полупроводника на чертежах

Технические нормы и правила регламентируют обозначение светодиода на схеме. ГОСТ 2.702-2011 предписывает:


Светодиод - полярность обозначения

Обозначение светодиода на схеме позволяет легко определить его полярность, но чтобы определить ее у только что купленного элемента, нужно посмотреть на его контакты. Плюсовой вывод анода обычно имеет большую длину, чем катода.

Если светодиод установлен на плате, а она по каким-либо причинам не имеет маркировки элементов, то полярность полупроводника можно определить, внимательно посмотрев на его корпус. Со стороны катода (отрицательного вывода) на корпусе есть засечка плоской формы. Также у прозрачных типов корпусов светодиода видна его внутренность. Подобие чашечки, в которой расположен кристалл полупроводника, имеет прямое соединение с катодом.

В том случае, когда невозможно определить полярность вышеперечисленными способами, но в наличие есть электронный мультиметр, можно использовать его. Берут обычный диод с известной полярностью, ставят прибор на операцию прозвонки и подключают к полупроводнику. Запоминают полярность, когда диод проводит ток. Подключают светодиод к измерительным щупам. Добиваются, чтобы он проводил ток, отмечают его полярность.

Светодиод на плате

При сборке печатной платы радиомонтажники пользуются схемой и перечнем элементов спецификации. В соответствии с этим перечнем наносится специальная маркировка с указанием вида элемента и номера позиции его на схеме. Существуют международные стандарты обозначений на плате, которые повсеместно используются в импортной аппаратуре.

Обозначение светодиода на плате присутствует в виде графического изображения, буквенной кодировки и числа. Первое отображает в основном полярность полупроводника, буквы указывают на тип прибора, а число - на порядковый номер его в схеме и перечне.

Графическое обозначение светодиода на схеме платы идентично его изображению в чертеже, но может не содержать окружность вокруг значка диода. Буквенная кодировка выполнена заглавными латинскими буквами - LED (импортные схемы) и HL (отечественные). Число идет после букв либо внизу. Без числа невозможно определить параметры полупроводника, которые на плате не указывают за редким исключением.

Маркировка светодиодов

Буквенное на схеме (маркировка) несет всю информацию о характеристиках конкретного полупроводникового прибора. Маркировка содержит довольно много символов, поэтому ее не ставят на корпус прибора, а приводят в схеме либо на упаковке не распаянных элементов. Светодиоды в лентах идут бухтами в катушках, на которых проставлены маркировочные символы. Символьная кодировка отражает:

  • Серию продукции.
  • Цвет излучения светодиода. Современные светоизлучающие диоды бывают белого, зеленого, красного, синего, оранжевого, желтого цветов.
  • Качество цветового потока. Например, светодиод для освещения в доме или на улице, индикации приборов, подсветки, для матриц изображения.
  • Тип линзы. Бывают рассеивающие свет приборы и узконаправленного излучения с куполообразными, прозрачными и матовыми линзами.
  • Мощность светового потока.
  • Потребляемая мощность электроэнергии.
  • Код идентификации производителя. Не имеет практической нагрузки.
  • Символы резерва. Производители оставляют их для возможной модификации элементов.

Не существует определенного стандарта в маркировке светодиодов, поэтому каждый производитель имеет свою собственную кодировку. Запомнить ее невозможно, но серьезных производителей этого товара на рынке не так уж много. Среди них можно выделить такие фирмы, как Philips, Cree и Samsung.

Заключение

Кроме обычных светодиодов с выводами, существуют SMD-светодиоды с контактными площадками. Они отличаются маленькими размерами. Буквенное обозначение светодиода этого типа на схеме идентично с LED-элементами, но на плате упрощено и обычно сводится к указанию полярности.







2024 © uzbek-seks.ru.